Advertisement

Microstructure and Mechanical Characteristics of CDA–B4C Hybrid Metal Matrix Composites

  • R. ManikandanEmail author
  • T. V. Arjunan
Article
  • 25 Downloads

Abstract

This study focuses on fabricating aluminium hybrid metal matrix with eco-friendly agro waste, cow dung ash and boron carbide by two stage stir casting. Weight percentage of cow dung ash and boron carbide were reinforced in ratios of 2.5:7.5, 5:5, and 7.5:2.5. The fabricated samples were subjected to optical microscope, scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) to identify micro structural analysis and phase identification of the reinforcements respectively. The effects on mechanical properties like density, hardness, tensile strength, impact strength and flexural strength properties were studied, and the results are compared to the base alloy (Al 7075). Fracture mechanisms for tensile and impact specimens were analysed through SEM and EDX. Micro structural and SEM images reveal uniform distribution of particles in the matrix. Increasing CDA particles has reduced the density of the hybrid composite up to 8%. A maximum increase in hardness and tensile strength was up to 30% and 56% respectively, and then a slight decrease was found in increasing the CDA particles. The flexural strength has increased to a maximum of 12% at 7.5% CDA and decrement in impact strength was inferred in all the hybrid composites when compared with base alloy. Dimples, transgranular cleavage facets and cracks are revealed from the fractured specimens of tensile and impact specimens.

Graphic Abstract

Keywords

Hybrid aluminium metal matrix Two stage stir casting Microstructure SEM–EDX Mechanical properties 

Notes

References

  1. 1.
    Trinh SN, Sastry S. Processing and properties of metal matrix composites. Mech. Eng. Mater. Sci. Ind. Study 10 (2016)Google Scholar
  2. 2.
    M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2), 319–334 (2003)CrossRefGoogle Scholar
  3. 3.
    K.T. Akhil, S. Arul, R. Sellamuthu, The effect of heat treatment and aging process on microstructure and mechanical properties of A356 aluminium alloy sections in casting. Procedia Eng. 97, 1676–1682 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Mohan et al., Microstructure and mechanical behavior of Al 7075-T6 subjected to shallow cryogenic treatment. J. Mater. Eng. Perform. 25(6), 2185–2194 (2016)CrossRefGoogle Scholar
  5. 5.
    B.C. Kandpal, J. Kumar, H. Singh, Production technologies of metal matrix composite: a review. Int. J. Res. Mech. Eng. Technol. 4(2), 27–32 (2014)Google Scholar
  6. 6.
    B.V. Ramnath et al., Aluminium metal matrix composites—a review. Rev. Adv. Mater. Sci 38(5), 55–60 (2014)Google Scholar
  7. 7.
    S. Lal, S. Kumar, Z.A. Khan, A.N. Siddiquee, Wire electrical discharge machining of AA7075/SiC/Al2O3 hybrid composite fabricated by inert gas-assisted electromagnetic stir-casting process. J. Braz. Soc. Mech. Sci. Eng. 36(2), 335–346 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—part II. J. Mater. Process. Technol. 123(2), 258–263 (2002)CrossRefGoogle Scholar
  9. 9.
    G.G. Sozhamannan, S.B. Prabu, V.S.K. Venkatagalapathy, Effect of processing parameters on metal matrix composites: stir casting process. J. Surf. Eng. Mater. Adv. Technol. 2(01), 11 (2012)Google Scholar
  10. 10.
    V.R. Koteswara Rao et al., A review on properties of aluminium based metal matrix composites via stir casting. Int. J. Sci. Eng. Res. 7(2), 742–749 (2016)Google Scholar
  11. 11.
    S.B. Prabu et al., Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171(2), 268–273 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Aizenshtein et al., Wetting and interface phenomena in the B4C/(Cu–B–Si) system. Scr. Mater. 53(11), 1231–1235 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Jung, S. Kang, Advances in manufacturing boron carbide–aluminum composites. J. Am. Ceram. Soc. 87(1), 47–54 (2004)CrossRefGoogle Scholar
  14. 14.
    F. Toptan et al., Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites. Mater. Des. 31, S87–S91 (2010)CrossRefGoogle Scholar
  15. 15.
    K.K. Alaneme, A.O. Aluko, Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Sci. Iran. 19(4), 992–996 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Adalarasan, A.S. Sundaram, Parameter design in friction welding of Al/SiC/Al2O3 composite using grey theory based principal component analysis (GT-PCA). J. Braz. Soc. Mech. Sci. Eng. 37(5), 1515–1528 (2015)CrossRefGoogle Scholar
  17. 17.
    K.R. Kumar, K. Kiran, V.S. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloys Compd. 723, 795–801 (2017)CrossRefGoogle Scholar
  18. 18.
    V.R. Rao, N. Ramanaiah, M.M.M. Sarcar, Tribological properties of aluminium metal matrix composites-AA7075 reinforced with titanium carbide (TiC) particles. Int. J. Adv. Sci. Technol. 88, 13–26 (2016)CrossRefGoogle Scholar
  19. 19.
    K.S. Murthy, D.P. Girish, R. Keshavamurthy, T. Varol, P.G. Koppad, Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging. Prog. Nat. Sci. Mater. Int. 27(4), 474–481 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Radhika, R. Raghu, Investigation on mechanical properties and analysis of dry sliding wear behavior of Al LM13/AlN metal matrix composite based on Taguchi’s technique. J. Tribol. 139(4), 041602 (2017)CrossRefGoogle Scholar
  21. 21.
    V.R. Rao, N. Ramanaiah, M.M.M. Sarcar, Fabrication and investigation on properties of TiC reinforced Al7075 metal matrix composites, in Applied Mechanics and Materials, vol. 592, ed. by K.R. Balasubramanian, S.P. Sivapirakasam, R. Anand (Trans Tech Publications, Zürich, 2014)Google Scholar
  22. 22.
    A. Baradeswaran, A. Elaya Perumal, Wear and mechanical characteristics of Al 7075/graphite composites. Compos. B Eng. 56, 472–476 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Rezayat, M.H. Parsa, H. Mirzadeh, J.M. Cabrera, Dynamic deformation response of Al–Mg and Al–Mg/B4C composite at elevated temperatures. Mater. Sci. Eng. A 712, 645–654 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Gharechomaghlu, H. Mirzadeh, Toward understanding the origins of poor ductility in a metal-matrix composite processed by accumulative roll bonding (ARB). Arch. Civ. Mech. Eng. 19(4), 958–966 (2019)CrossRefGoogle Scholar
  25. 25.
    G. Singh, S. Goyal, Microstructure and mechanical behavior of AA6082-T6/SiC/B4C-based aluminum hybrid composites. Part. Sci. Technol. 36(2), 154–161 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Liu, Y. Wang, T. Muthuramalingam, G. Anbuchezhiyan, Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Compos. B Eng. 176, 107329 (2019)CrossRefGoogle Scholar
  27. 27.
    R. Liu, W. Wang, H. Chen, M. Tan, Y. Zhang, Microstructure evolution and mechanical properties of micro-/nano-bimodal size B4C particles reinforced aluminum matrix composites prepared by SPS followed by HER. Vacuum 151, 39–50 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Bhandakkar, R.C. Prasad, S.M. Sastry, Fracture toughness of AA2024 aluminum fly ash metal matrix composites. Int. J. Compos. Mater. 4(2), 108–124 (2014)Google Scholar
  29. 29.
    S.P. Dwivedi, S. Sharma, R.K. Mishra, Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting. J. Braz. Soc. Mech. Sci. Eng. 37(1), 57–67 (2015)CrossRefGoogle Scholar
  30. 30.
    B.S. Yigezu, M.M. Mahapatra, P.K. Jha, Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. J. Miner. Mater. Charact. Eng. 1(04), 124 (2013)Google Scholar
  31. 31.
    G. Arora, S. Sharma, A review on monolithic and hybrid metal–matrix composites reinforced with industrial-agro wastes. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4819–4835 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Devaraju, A. Kumar, B. Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater. Des. 45, 576–585 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Devaraju, A. Kumar, B. Kotiveerachari, Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Trans. Nonferrous Met. Soc. China 23(5), 1275–1280 (2013)CrossRefGoogle Scholar
  34. 34.
    E. Gikunoo, O. Omotoso, I.N.A. Oguocha, Effect of fly ash particles on the mechanical properties of aluminium casting alloy A535. Mater. Sci. Technol. 21(2), 143–152 (2005)CrossRefGoogle Scholar
  35. 35.
    I. Balasubramanian, R. Maheswaran, Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater. Des. (1980–2015) 65, 511–520 (2015)CrossRefGoogle Scholar
  36. 36.
    O.B. Fatile, J.I. Akinruli, A.A. Amori, Microstructure and mechanical behaviour of stir-cast Al–Mg–Sl alloy matrix hybrid composite reinforced with corn cob ash and silicon carbide. Int. J. Eng. Technol. Innov. 4(4), 251 (2014)Google Scholar
  37. 37.
    M.O. Bodunrin et al., Porosity measurement and wear performance of aluminium hybrid composites reinforced with silica sand and bamboo leaf ash. Ann. Fac. Eng. Hunedoara Int. J. Eng. 14(1), 231–238 (2016)Google Scholar
  38. 38.
    Y.R. Loh et al., Sugarcane bagasse—the future composite material: a literature review. Resour. Conserv. Recycl. 75, 14–22 (2013)CrossRefGoogle Scholar
  39. 39.
    V.S. Aigbodion et al., The development of mathematical model for the prediction of ageing behaviour for Al–Cu–Mg/bagasse ash particulate composites. J. Miner. Mater. Charact. Eng. 9(10), 907 (2010)Google Scholar
  40. 40.
    M. Arulraj, P.K. Palani, Parametric optimization for improving impact strength of squeeze cast of hybrid metal matrix (LM24–SiCp–coconut shell ash) composite. J. Braz. Soc. Mech. Sci. Eng. 40(1), 2 (2018)CrossRefGoogle Scholar
  41. 41.
    L. Venkatesh, T.V. Arjunan, R. Ravikumar, Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. J. Braz. Soc. Mech. Sci. Eng. 41(2019), 295 (2019)CrossRefGoogle Scholar
  42. 42.
    M. Arulraj, K.P. Ponnusamy, L. Venkatesh, Optimization of machining parameters in turning of hybrid aluminium-matrix (LM24–SiCp–coconut shell ash) composite. Mater. Tehnol. 53(2), 263–268 (2019)CrossRefGoogle Scholar
  43. 43.
    D.S. Prasad, A.R. Krishna, Production and mechanical properties of A356. 2/RHA composites. Int. J. Adv. Sci. Technol. 33(51–58), 2019 (2011)Google Scholar
  44. 44.
    K.K. Alaneme, B.O. Ademilua, M.O. Bodunrin, Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leafash. Tribol. Ind. 35(1), 25–35 (2013)Google Scholar
  45. 45.
    K.K. Alaneme, T.M. Adewale, Influence of rice husk ash–silicon carbide weight ratios on the mechanical behaviour of Al–Mg–Si alloy matrix hybrid composites. Tribol. Ind. 35, 163–172 (2013)Google Scholar
  46. 46.
    G. Narasaraju, D.L. Raju, Characterization of hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites. Mater. Today Proc. 2(4–5), 3056–3064 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Singh, G. Singh, A. Aggarwal, Impact strength of RHA and fly ash based aluminum composites. Int. J. Res. Mech. Eng. Technol. 4, 143–145 (2014)Google Scholar
  48. 48.
    J.E. Oghenevweta et al., Mechanical properties and microstructural analysis of Al–Si–Mg/carbonized maize stalk waste particulate composites. J. King Saud Univ. Eng. Sci. 28(2), 222–229 (2016)Google Scholar
  49. 49.
    K.R. Kumar, T. Pridhar, V.S. Balaji, Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash (CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J. Alloys Compd. 765, 171–179 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Sha, W. Shusen, L. Wan, Combined effects of cobalt addition and ultrasonic vibration on microstructure and mechanical properties of hypereutectic Al–Si alloys with 0.7% Fe. Mater. Sci. Eng. A 554, 142–148 (2012)CrossRefGoogle Scholar
  51. 51.
    J. Zhang et al., Microstructural development of Al–15wt.% Mg2Si in situ composite with mischmetal addition. Mater. Sci. Eng. A 281(1–2), 104–112 (2000)CrossRefGoogle Scholar
  52. 52.
    S.-J. Hong et al., Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng. A 347(1–2), 198–204 (2003)CrossRefGoogle Scholar
  53. 53.
    A. Baradeswaran et al., Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites. Mater. Des. 63, 620–632 (2014)CrossRefGoogle Scholar
  54. 54.
    A.F. Boostani et al., Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos. A Appl. Sci. Manuf. 68, 155–163 (2015)CrossRefGoogle Scholar
  55. 55.
    C. Li, X. Liu, G. Zhang, Heterogeneous nucleating role of TiB2 or AlP/TiB2 coupled compounds on primary Mg2Si in Al–Mg–Si alloys. Mater. Sci. Eng. A 497(1–2), 432–437 (2008)CrossRefGoogle Scholar
  56. 56.
    V.V. Ganesh, C.K. Lee, M. Gupta, Enhancing the tensile modulus and strength of an aluminum alloy using interconnected reinforcement methodology. Mater. Sci. Eng. A 333(1–2), 193–198 (2002)CrossRefGoogle Scholar
  57. 57.
    T.H. Nam, G. Requena, P. Degischer, Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles. Compos. A Appl. Sci. Manuf. 39(5), 856–865 (2008)CrossRefGoogle Scholar
  58. 58.
    S. Ozden, R. Ekici, F. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Compos. A Appl. Sci. Manuf. 38(2), 484–494 (2007)CrossRefGoogle Scholar
  59. 59.
    M.A. Maleque, A.A. Adebisi, N. Izzati, Analysis of fracture mechanism for Al–Mg/SiCp composite materials, in IOP Conference Series: Materials Science and Engineering, vol. 184. no. 1 (IOP Publishing, Bristol, 2017)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSri Ramakrishna Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Mechanical EngineeringCoimbatore Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations