Advertisement

Structural Mechanisms of the Cooling Rate Effect on the Deformation Behaviors in Metallic Glasses

  • Bian Zhou
  • Ming-fei Li
  • Fan Xiong
  • Liang YangEmail author
Article
  • 44 Downloads

Abstract

In this work, the structural mechanisms of the cooling rate effect on the deformation behaviors in metallic glasses (MGs) is studied, by performing the synchrotron radiation-based experiments coupled with a series of simulations. It is found that a MG prepared at lower cooling rate has the higher yield strength and is more likely to soften itself, resulting in lower plasticity. This is because some atomic-to-cluster level structural factors, such as coordination numbers, atomic packing efficiencies, cluster concentrations and regularities. In addition, a quantitative analysis reveals that higher cooling rate leads to more free volumes, and significantly affect the evolution of free volumes during the compressive deformation, tuning the formation and the evolution of shear transformation zones, as well as the yield strength and the plasticity.

Graphical Abstract

Keywords

Metallic glasses Synchrotron radiation Molecular dynamics Cooling rate Compressive deformation Microstructure 

Notes

Acknowledgements

The authors would like to thank the Shanghai Synchrotron Radiation Facility in China, the Hasylab in Germany, the National Synchrotron Radiation Laboratory in China, for the use of the advanced synchrotron radiation facilities. Financial supports from the National Natural Science Foundation of China (Grant No. 51471088) and the Fundamental Research Funds for the Central Universities (Grant No. NE2015004) are gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    P. Duwez, R.H. Willens, W. Klement, J. Appl. Phys. 31, 1136–1137 (1960)CrossRefGoogle Scholar
  2. 2.
    L. Reichel, L. Schultz, D. Pohl, S. Oswald, S. Fahler, M. Werwinski, A. Edstrom, E.K. Delczeg-Czirjak, J. Rusz, J. Phys. Condens. Matter 27, 476002 (2015)CrossRefGoogle Scholar
  3. 3.
    H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kühn, D.H. Kim, K.B. Kim, J. Eckert, Mater. Des. 86, 703–708 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, L. Liu, Electrochim. Acta 56, 6380–6388 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067–4109 (2007)CrossRefGoogle Scholar
  6. 6.
    S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524, 200–203 (2015)CrossRefGoogle Scholar
  7. 7.
    W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44, 45–89 (2004)CrossRefGoogle Scholar
  8. 8.
    Y.Q. Cheng, A.J. Cao, H.W. Sheng, E. Ma, Acta Mater. 56, 5263–5275 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Wang, P.D. Hodgson, J. Zhang, W. Yan, C. Yang, J. Mater. Process. Technol. 209, 4601–4606 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Li, G.H. Wang, J.J. Zhao, X.F. Bian, J. Chem. Phys. 116, 10809–10815 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Yang, G.Q. Guo, L.Y. Chen, B. LaQua, J.Z. Jiang, Intermetallics 44, 94–100 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.J. Huang, J. Shen, J.F. Sun, Appl. Phys. Lett. 90, 081919 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, H. Bei, C.T. Liu, E.P. George, Appl. Phys. Lett. 90, 071909 (2007)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Liu, Y. Yang, S. Guo, X.J. Liu, J. Lu, Y.H. Liu, C.T. Liu, J. Alloys Compd. 509, 3269–3273 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Li, S. Kou, Y. Zhao, G. Liu, Y. Ding, Prog. Nat. Sci. 22, 21–25 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Hu, H.H. Yan, Z.J. Yan, X.G. Wang, AIP Adv. 8, 105002 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Yokoyama, K. Yamano, K. Fukaura, H. Sunada, A. Inoue, Scr. Mater. 44, 1529–1533 (2001)CrossRefGoogle Scholar
  18. 18.
    R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, J. Appl. Phys. 94, 904–911 (2003)CrossRefGoogle Scholar
  19. 19.
    W.H. Jiang, F.X. Liu, Y.D. Wang, H.F. Zhang, H. Choo, P.K. Liaw, Mat. Sci. Eng. A 430, 350–354 (2006)CrossRefGoogle Scholar
  20. 20.
    W.B. Liao, Y.Y. Zhao, J.P. He, Y. Zhang, J. Alloys Compd. 555, 357–361 (2013)CrossRefGoogle Scholar
  21. 21.
    X.H. Lin, W.L. Johnson, J. Appl. Phys. 78, 6514–6519 (1995)CrossRefGoogle Scholar
  22. 22.
    D. Wang, H. Tan, Y. Li, Acta Mater. 53, 2969–2979 (2005)CrossRefGoogle Scholar
  23. 23.
    N.H. Pryds, X. Huang, Metall. Mater. Trans. A 31, 3155–3166 (2000)CrossRefGoogle Scholar
  24. 24.
    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14, 235–248 (1996)CrossRefGoogle Scholar
  25. 25.
    T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153–173 (1965)CrossRefGoogle Scholar
  26. 26.
    M. Felderhoff, K. Klementiev, W. Grunert, B. Spliethoff, B. Tesche, J.M. Bellosta von Colbe, B. Bogdanovic, M. Hartel, A. Pommerin, F. Schuth, C. Weidenthaler, Phys. Chem. Chem. Phys. 6, 4369–4374 (2004)CrossRefGoogle Scholar
  27. 27.
    R.L. McGreevy, J. Phys. Condens. Matter 13, R877–R913 (2001)CrossRefGoogle Scholar
  28. 28.
    L. Yang, G.Q. Guo, L.Y. Chen, C.L. Huang, T. Ge, D. Chen, P.K. Liaw, K. Saksl, Y. Ren, Q.S. Zeng, B. LaQua, F.G. Chen, J.Z. Jiang, Phys. Rev. Lett. 109, 105502 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Ogata, F. Shimizu, J. Li, M. Wakeda, Y. Shibutani, Intermetallics 14, 1033–1037 (2006)CrossRefGoogle Scholar
  30. 30.
    G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Cagin, W.L. Johnson, W.A. Goddard, Phys. Rev. B 74, 019901 (2006)CrossRefGoogle Scholar
  31. 31.
    Y.L. Sun, J. Shen, A.A. Valladares, J. Appl. Phys. 106, 073520 (2009)CrossRefGoogle Scholar
  32. 32.
    K.W. Park, E. Fleury, H.K. Seok, Y.C. Kim, Intermetallics 19, 1168–1173 (2011)CrossRefGoogle Scholar
  33. 33.
    S.D. Feng, K.C. Chan, L. Zhao, S.P. Pan, L. Qi, L.M. Wang, R.P. Liu, Mater. Des. 158, 248–255 (2018)CrossRefGoogle Scholar
  34. 34.
    N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, J. Alloys Compd. 485, 163–169 (2009)CrossRefGoogle Scholar
  35. 35.
    P. Jóvári, I. Kaban, B. Escher, K.K. Song, J. Eckert, B. Beuneu, M.A. Webb, N. Chen, J. Non-Cryst. Solids 459, 99–102 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Itoh, J. Saida, T. Otomo, J. Alloys Compd. 732, 585–592 (2018)CrossRefGoogle Scholar
  37. 37.
    P.W. Wang, H.Y. Li, L. Yang, Metals 7, 444 (2017)CrossRefGoogle Scholar
  38. 38.
    B.F. Lu, L.T. Kong, K.J. Laws, W.Q. Xu, Z. Jiang, Y.Y. Huang, M. Ferry, J.F. Li, Y.H. Zhou, Mater. Charact. 141, 41–48 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Yang, H.Y. Li, P.W. Wang, S.Y. Wu, G.Q. Guo, B. Liao, Q.L. Guo, X.Q. Fan, P. Huang, H.B. Lou, F.M. Guo, Q.S. Zeng, T. Sun, Y. Ren, L.Y. Chen, Sci. Rep. 7, 16739 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  41. 41.
    Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102, 245501 (2009)CrossRefGoogle Scholar
  42. 42.
    W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985)CrossRefGoogle Scholar
  43. 43.
    T. Frolov, K.A. Darling, L.J. Kecskes, Y. Mishin, Acta Mater. 60, 2158–2168 (2012)CrossRefGoogle Scholar
  44. 44.
    Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang, J.Z. Jiang, W.L. Mao, H.-K. Mao, Science 332, 1404–1406 (2011)CrossRefGoogle Scholar
  45. 45.
    Y. Xiao, Y. Wu, Z. Liu, H. Wu, Z. Lü, Sci. China Phys. Mech. 53, 394–398 (2010)CrossRefGoogle Scholar
  46. 46.
    M. Wakeda, Y. Shibutani, S. Ogata, J. Park, Intermetallics 15, 139–144 (2007)CrossRefGoogle Scholar
  47. 47.
    H.L. Peng, M.Z. Li, W.H. Wang, Phys. Rev. Lett. 106, 135503 (2011)CrossRefGoogle Scholar
  48. 48.
    W. Da, P.W. Wang, Y.F. Wang, M.F. Li, L. Yang, Materials 12, 98 (2019)CrossRefGoogle Scholar
  49. 49.
    J.L. Finney, D. Bernal John, Proc. R. Soc. London Ser. A 319, 479–493 (1970)CrossRefGoogle Scholar
  50. 50.
    A.P. Tsai, Sci. Technol. Adv. Mater. 9, 013008 (2008)CrossRefGoogle Scholar
  51. 51.
    X.K. Xi, L.L. Li, B. Zhang, W.H. Wang, Y. Wu, Phys. Rev. Lett. 99, 095501 (2007)CrossRefGoogle Scholar
  52. 52.
    S.Y. Wang, M.J. Kramer, M. Xu, S. Wu, S.G. Hao, D.J. Sordelet, K.M. Ho, C.Z. Wang, Phys. Rev. B 79, 144205 (2009)CrossRefGoogle Scholar
  53. 53.
    N.N. Medvedev, Y.I. Naberukhin, J. Non-Cryst. Solids 94, 402–406 (1987)CrossRefGoogle Scholar
  54. 54.
    M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164–1169 (1959)CrossRefGoogle Scholar
  55. 55.
    D. Turnbull, M.H. Cohen, J. Chem. Phys. 34, 120–125 (1961)CrossRefGoogle Scholar
  56. 56.
    D. Turnbull, M.H. Cohen, J. Chem. Phys. 52, 3038–3041 (1970)CrossRefGoogle Scholar
  57. 57.
    J. Sietsma, B.J. Thijsse, Phys. Rev. B 52, 3248–3255 (1995)CrossRefGoogle Scholar
  58. 58.
    F. Li, X.J. Liu, H.Y. Hou, G. Chen, G.L. Chen, M. Li, Intermetallics 17, 98–103 (2009)CrossRefGoogle Scholar
  59. 59.
    Y. Zhang, H. Hahn, J. Non-Cryst. Solids 357, 1420–1425 (2011)CrossRefGoogle Scholar
  60. 60.
    X.X. Yue, C.T. Liu, S.Y. Pan, A. Inoue, P.K. Liaw, C. Fan, Physica B 547, 48–54 (2018)CrossRefGoogle Scholar
  61. 61.
    A.S. Argon, Acta Metall. 27, 47–58 (1979)CrossRefGoogle Scholar
  62. 62.
    A.S. Argon, J. Phys. Chem. Solids 43, 945–961 (1982)CrossRefGoogle Scholar
  63. 63.
    Y. Shi, M.B. Katz, H. Li, M.L. Falk, Phys. Rev. Lett. 98, 185505 (2007)CrossRefGoogle Scholar
  64. 64.
    S.D. Feng, W. Jiao, S.P. Pan, L. Qi, W. Gao, L.M. Wang, G. Li, M.Z. Ma, R.P. Liu, J. Non-Cryst. Solids 430, 94–98 (2015)CrossRefGoogle Scholar
  65. 65.
    M.Q. Jiang, G. Wilde, L.H. Dai, Mech. Mater. 81, 72–83 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations