Effect of Ultrasonic Treatment on Grain Structure, Eutectic Phase and Mechanical Properties of an Al–6.2 wt% Cu Alloy

  • Li Zhang
  • Xiaoqian Li
  • Ripeng JiangEmail author
  • Ruiqing Li
  • Lihua Zhang


The microstructural modification of eutectic phase is a crucial factor for the mechanical properties strengthening of the Al–Cu binary alloy. In this paper, Al–6.2% Cu melts were subjected to ultrasonic treatment from 710 or 660 °C with different durations. The microstructural evolutions of primary α-Al grains and α-Al + θ-Al2Cu eutectic phase under ultrasonication were investigated based on the nucleation and growth behavior. Results indicated that with the increase of ultrasonic processing time, the growth of dendritic or petaloid grains were completely suppressed and noticeable refinement to globular morphology were observed for α-Al grains. Meanwhile, broad lamella-like eutectic structure transformed to debris or even particles with continuous ultrasonication. Accordingly, the area fraction, average length and width of coarsening eutectic lamellas were dramatically reduced. In addition, the decrease of coarsening eutectic phase rather than the refinement of α-Al grains was found to be the main contributor to the enhancement of mechanical properties for Al–6.2% Cu alloy. The mechanisms underlying the transformation of eutectic phase under ultrasonic treatment was also interpreted based on the experimental results.

Graphic Abstract


Ultrasonic treatment α-Al phase α-Al + θ-Al2Cu eutectic phase Mechanical properties 



This work has received financial support from the National Natural Science Foundation of China (Grant Nos. U1637601, 51575539, 51805549), the Key Projects of Hunan Province Science and Technology Plan (No. 2016GK1004). In addition, special thanks to Dr. Zhilin Liu for paper revision.


  1. 1.
    F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, Acta Mate. 61, 360 (2013)CrossRefGoogle Scholar
  2. 2.
    W.M. Jiang, Z.T. Fan, Y.C. Dai, C. Li, Mater. Sci. Eng., A 597, 237 (2014)CrossRefGoogle Scholar
  3. 3.
    P.P. Bhingole, G.P. Chaudhari, Mater. Sci. Eng., A 556, 954 (2012)CrossRefGoogle Scholar
  4. 4.
    W.M. Jiang, Z.T. Fan, X. Chen, B.J. Wang, H.B. Wu, Mater. Sci. Eng. A 619, 228 (2014)CrossRefGoogle Scholar
  5. 5.
    S.R. Yu, H.K. Feng, Y.L. Li, L.Y. Gong, J. Alloy. Compd. 484, 360 (2009)CrossRefGoogle Scholar
  6. 6.
    B. Patel, G.P. Chaudhari, P.P. Bhingole, Mater. Lett. 66, 335 (2012)CrossRefGoogle Scholar
  7. 7.
    G.M. Gao, Z.J. Li, Q.Y. Han, Q.J. Zhai, Mater. Sci. Eng., A 502, 2 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. StJohn, J. Cryst. Growth 408, 119 (2014)CrossRefGoogle Scholar
  9. 9.
    C.J. Todaro, M.A. Easton, D. Qiu, G. Wang, D.H. StJoh, M. Qian, J. Mater. Process Technol. 271, 346 (2019)CrossRefGoogle Scholar
  10. 10.
    H. Zhu, F. Qin, H. Chen, J. Alloy. Compd. 777, 1025 (2019)CrossRefGoogle Scholar
  11. 11.
    M.K. Aghayani, B. Niroumand, J. Alloy. Compd. 509, 114 (2011)CrossRefGoogle Scholar
  12. 12.
    X.G. Fang, S.S. Wu, S.L. Lü, J. Wang, X. Yang, Mater. Sci. Eng., A 679, 372 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Tong, G.Q. You, Y.C. Wang, H. Wu, W.L. Liu, P.Q. Li, W. Guo, Mater. Sci. Eng., A 731, 44 (2018)CrossRefGoogle Scholar
  14. 14.
    C. Gang, M. Yang, Y. Jin, H.M. Zhang, F. Han, Q. Chen, Z.D. Zhao, J. Mater. Process Technol. 266, 19 (2019)CrossRefGoogle Scholar
  15. 15.
    V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak, Mater. Sci. Eng., A 502, 45 (2009)CrossRefGoogle Scholar
  16. 16.
    H. He, Y. Yi, S. Huang, Y.X. Zhang, Mater. Charact. 135, 18 (2018)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X.Q. Li, R.Q. Li, R.P. Jiang, L.H. Zhang, Mater. Sci. Eng. A 763, 138154 (2019)CrossRefGoogle Scholar
  18. 18.
    H.M. Vishwanatha, J. Eravellya, C.S. Kumarb, S. Ghosh, Mater. Sci. Eng., A 708, 222 (2017)CrossRefGoogle Scholar
  19. 19.
    S.B. Kim, Y.H. Cho, J.G. Jung, W.H. Yoon, Y.K. Lee, J.M. Lee, Met. Mater. Int. 24, 1376 (2018)CrossRefGoogle Scholar
  20. 20.
    G. Chen, X. Chang, J. Zhang, Y. Jin, C. Sun, Q. Chen, Z.D. Zhao, Met. Mater. Int (2019). CrossRefGoogle Scholar
  21. 21.
    L. Zhang, R.Q. Li, R.P. Jiang, L.H. Zhang, X.Q. Li, JOM 71, 2063 (2019)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, R.P. Jiang, X.Q. Li, R.Q. Li, L.H. Zhang, Mater. Sci. Tech-Lond. 35, 1392 (2019)CrossRefGoogle Scholar
  23. 23.
    R.P. Jiang, X.Q. Li, M. Zhang, Mat. Mater. Int. 21, 104 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, T. Connolley, Acta Mater. 141, 142 (2017)CrossRefGoogle Scholar
  25. 25.
    G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd edn. (CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  26. 26.
    D. Shu, B. Sun, J.W. Mi, P.S. Grant, Metall. Mater. Trans. A 43, 3755 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Pilling, A. Hellawell, Metall. Mater. Trans. A 27, 229 (1996)CrossRefGoogle Scholar
  28. 28.
    J. Campbell, Int. Met. Rev. 26, 71 (1981)CrossRefGoogle Scholar
  29. 29.
    V. Abramov, O. Abramov, V. Bulgakov, F. Sommer, Mater. Lett. 37, 27 (1998)CrossRefGoogle Scholar
  30. 30.
    F. Wang, I. Tzanakis, D. Eski, J. Mi, T. Connolley, Ultrason. Sonochem. 39, 66 (2017)CrossRefGoogle Scholar
  31. 31.
    G.F. Balandin, Fundamentals of the Theory of Formation of Castings (In Two Parts) [in Russian], Part 1 (Mashinostroenie, Moscow, 1976)Google Scholar
  32. 32.
    L. Zhang, D.G. Eskin, L. Katgerman, J. Mater. Sci. 46, 5252 (2011)CrossRefGoogle Scholar
  33. 33.
    J.G. Jung, S.H. Lee, Y.H. Cho, W.H. Yoon, T.Y. Ahn, Y.S. Ahn, J.M. Lee, J. Alloy. Compd. 712, 277 (2017)CrossRefGoogle Scholar
  34. 34.
    D.G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, 1st edn. (CRC Press, Boca Raton, 2018)Google Scholar
  35. 35.
    N. Srivastava, G.P. Chaudhari, M. Qian, J. Mater. Process Technol. 249, 367 (2017)CrossRefGoogle Scholar
  36. 36.
    J.Y. Wang, B.J. Wang, L.F. Huang, J. Mater. Sci. Technol. 33, 1235 (2017)CrossRefGoogle Scholar
  37. 37.
    D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55, 4287 (2007)CrossRefGoogle Scholar
  38. 38.
    W. Connolly, F.E. Fox, J. Acoust. Soc. Am. 26, 843 (1954)CrossRefGoogle Scholar
  39. 39.
    D.G. Eskin, I. Tzanakis, In Solidification Processing of Metallic Alloys Under External Fields, ed. by D.G. Eskin, J.W. Mi (Springer, Switzerland, 2018) p. 153Google Scholar
  40. 40.
    N. Hansen, Scripta Mater. 51, 801 (2004)CrossRefGoogle Scholar
  41. 41.
    H. He, Y. Yi, S. Huang, Y.X. Zhang, Mater. Sci. Eng., A 712, 414 (2018)CrossRefGoogle Scholar
  42. 42.
    L. Ceschini, A. Morri, A. Morri, G. Pivetti, Mater. Des. 32, 1367 (2011)CrossRefGoogle Scholar
  43. 43.
    Q.G. Wang, Metall. Mater. Trans. A 34, 2887 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Research Institute of Light AlloyCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of High Performance Complex ManufacturingChangshaChina
  3. 3.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina

Personalised recommendations