Microstructure and Mechanical Property Improvement of Dissimilar Metal Joints for TC4 Ti Alloy to 304 Stainless Steel Using TA2/Q235 Composite Interlayer

  • Yan ZhangEmail author
  • YiDi Gao
  • JianPing Zhou
  • DaQian Sun
  • HongMei Li


In this work, TA2/Q235 was used as an composite interlayer to prevent the formation of these brittle Ti–Fe intermetallics when joining TC4 Ti alloy to 304 stainless steel (SS). The TA2/Q235 composite interlayer was prepared by explosive welding. The laser was focused on the TC4–TA2 interface, which joined the TC4 and TA2 by fusion welding. At TC4–TA2 interface, a weld zone was formed due to the mixing of molten TC4 and TA2. The laser was focused on the Q235–304 SS interface, a weld zone was formed due to the mixing of molten Q235 and 304 SS. Composite interlayer TA/Q235 was used to prevent the formation of Ti–Fe intermetallics during welding and improve microstructure and properties of the SS–Ti alloy joint. The joint fractured at the TA2/Q235 explosive welding interface with the maximum tensile strength of 548 MPa.

Graphic Abstract


TC4 Ti alloy 304 Stainless steel Composite interlayer Laser welding Microstructure Tensile strength 



  1. 1.
    M. Gao, S.W. Mei, Z.M. Wang, X.Y. Li, X.Y. Zeng, Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci. Technol. Weld. Join 17, 269–276 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Shuhai, Z. Mingxin, H. Jihua, Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater. Des. 53, 504–511 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Kundu, M. Ghosh, A. Laik, K. Bhanumuthy, G.B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater. Sci. Eng., A 407, 154–160 (2005)CrossRefGoogle Scholar
  4. 4.
    L. Wei, Y. Lei, K. Sreekar, L. Frank, N. Joseph, M. Karen, T. Brown, W.J. Seufzer, Ti–Fe intermetallics analysis and control in joining titanium alloy and stainless steel by Laser Metal Deposition. J. Mater. Process Technol. 242, 39–48 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Ishida, Y. Gao, K. Nagatsuka, M. Takahashi, K. Nakata, Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel. J. Alloys Compd. 630, 172–177 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Kundu, S. Chatterjee, Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer. Mater. Charact. 59, 631–637 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Ghosh, S. Chatterjee, Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel. Mater. Charact. 54, 327–337 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Lee, J. Park, J. Lee, C. Rhee, Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer. J. Nucl. Mater. 439, 168–173 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, D.Q. Sun, X.Y. Gu, Y.J. Liu, Nd/YAG pulsed laser welding of TC4 titanium alloy to 301L stainless steel via pure copper interlayer. Int. J. Adv. Manuf. Technol. 90, 953–961 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Atasoy, N. Kahraman, Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater. Charact. 59, 1481–1490 (2008)CrossRefGoogle Scholar
  11. 11.
    P. He, H. Yue, J.H. Zhan, Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater. Sci. Eng., A 486, 171–176 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Gao, S.W. Mei, Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci. Technol. Weld. Join. 17, 269–276 (2002)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, D.Q. Sun, X.Y. Gu, L. HongMei, A hybrid joint based on two kinds of bonding mechanisms for Titanium alloy and stainless steel by pulsed laser welding. Mater. Lett. 185, 152–155 (2016)CrossRefGoogle Scholar
  14. 14.
    J.P. Oliveira, B. Panton, Z. Zeng, Laser joining of NiTi to Ti6Al4V using a niobium interlayer. Acta Mater. 105, 9–15 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Kundu, S. Sam, S. Chatterjee, Evaluation of interface microstructure and mechanical properties of the diffusion bonded joints of Ti–6Al–4V alloy to micro-duplex stainless steel. Mater. Sci. Eng., A 528, 4910–4916 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg, Joining of CP-Ti to 304 stainless steel using friction stir welding technique. Mater. Des. 31, 4800–4807 (2010)CrossRefGoogle Scholar
  17. 17.
    S.A. Mousavi, P.F. Sartangi, Experimental investigation of explosive welding of Cp-titanium/AISI 304 Stainless steel. Mater. Des. 30, 459–468 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Chen, A. Paul, M. Pal, CO2 laser welding of galvanized steel sheets using vent holes. Mater. Des. 30, 245–251 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Amit, Y. Duck, C. Darek, Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel. Opt. Laser Eng. 51, 1143–1152 (2013)CrossRefGoogle Scholar
  20. 20.
    W.F. Ho, C.P. Jo, J.H.C. Lin, Structure and properties of cast binary Ti–Mo alloy. Biomaterials 20, 2115–2122 (1999)CrossRefGoogle Scholar
  21. 21.
    N.T.C. Oliveira, G. Aleixo, R. Caram, A.C. Guastaldi, Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater. Sci. Eng., A 452–453, 727–731 (2007)CrossRefGoogle Scholar
  22. 22.
    G. Lüering, J.C. Willians, Engineering Materials and Process: Titanium (Springer, Heideberg, 2003)Google Scholar
  23. 23.
    W. Tian. Experimental study on the laser welding of magnesium and aluminum dissimilar metal. Master thesis, Hunan University, 2013Google Scholar
  24. 24.
    Ma. Xuyi, G. Shuili, L. Zhang Jiuxing, Y.J. Wei, Formation, microstructure and mechanical properties of double-sided laser beam welded Ti–6Al–4V T-joint. Trans. Nonferrous Metals Soc. China 26, 729–735 (2016)CrossRefGoogle Scholar
  25. 25.
    J.L. Murray, The Fe–Ti (iron–titanium) system. Bull. Alloy Phase Diagr. 2, 320–334 (1981)CrossRefGoogle Scholar
  26. 26.
    C. Yu, M.F. Wu, H. Lu, Factors influencing formation and growth of coarse Ti–Fe compound in Ti–Fe eutectic reaction. Sci. Technol. Weld. Join. 11, 265–270 (2006)CrossRefGoogle Scholar
  27. 27.
    S.A.A. Akbari Mousavi, P.F. Sartangi, Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium-stainless steel composite. Mater. Sci. Eng. A 2008(494), 329–336 (2008)CrossRefGoogle Scholar
  28. 28.
    G.B. Kale, R.V. Patil, P.S. Gawade, Interdiffusion studies in titanium-304 stainless steel system. J. Nucl. Mater. 257, 44–50 (1998)CrossRefGoogle Scholar
  29. 29.
    B. Aleman, I. Gutierrez, J.J. Urcola, Interface microstructures in diffusion bonding of titanium alloys to stainless steel and low alloy steels. Mater. Sci. Technol. 9, 633–641 (1993)CrossRefGoogle Scholar
  30. 30.
    J. Song, A. Kostka, M. Veehmayer, D. Raabe, Hierarchical microstructure of explosive joints: example of titanium to steel cladding. Mater. Sci. Eng., A 528, 2641–2647 (2011)CrossRefGoogle Scholar
  31. 31.
    O. Torun, A. Karabulut, B. Baksan, I. Çelikyürek, Diffusion bonding of AZ91 using a silver interlayer. Mater. Des. 29, 2043–2046 (2008)CrossRefGoogle Scholar
  32. 32.
    Y.B. Chen, Z.L. Lei, L.Q. Li, L. Wu, Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci. Technol. Weld. Join. 11, 403–411 (2006)CrossRefGoogle Scholar
  33. 33.
    T.P. Isaac, M. Dollar, T.B. Massalaki, Metall. Trans. A 19A, 675–686 (1988)Google Scholar
  34. 34.
    D. Ye, J. Hu, Thermodynamic Data Manual of Practical Inorganic Materials (Metallurgical Industry Press, Beijing, 2002)Google Scholar
  35. 35.
    Y.C. Hong, W. Zhang, Relationship between overlap rate of weld spots and solidification characteristic for pulsed laser welding. Heat Treat. 4, 13–19 (2014)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Yan Zhang
    • 1
    Email author
  • YiDi Gao
    • 1
  • JianPing Zhou
    • 1
  • DaQian Sun
    • 2
  • HongMei Li
    • 2
  1. 1.School of Mechanical EngineeringXinjiang UniversitywulumuqiChina
  2. 2.Key Laboratory of Automobile Materials, School of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations