Advertisement

Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with Simultaneously Improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing

  • M. MesbahEmail author
  • A. Fattahi
  • A. R. BushroaEmail author
  • G. Faraji
  • K. Y. Wong
  • W. J. Basirun
  • A. Fallahpour
  • B. Nasiri-Tabrizi
Article
  • 60 Downloads

Abstract

Ultrafine grained ZK60 magnesium (UFG–ZK60 Mg) tubes were successfully fabricated by a parallel tubular-channel angular pressing (PTCAP) process. The number of pass effects on the phase composition, microstructural features and mechanical properties were examined. Also, two types of Artificial Neural Network known as Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) were employed to accurately estimate mechanical behavior of the PTCAP-processed ZK60 Mg alloy. The results showed that all the processed tubes had more refined microstructure with ~ 7 to 0.9 μm grain sizes, which consist of an average crystallite size between 68 ± 8 and 51 ± 8 nm, compared to the as-received specimen with a mean grain size of ~ 90 μm. Similar XRD profiles were achieved following different PTCAP passes, however, some discrepancies were observed as the number of passes increased, which corroborated the structural changes during the PTCAP process. The microscopic observations also revealed the microstructural changes by increasing the PTCAP passes. The hardness of the processed tubes increased with the number of PTCAP passes, from 77 ± 2 HV for the unprocessed alloy to a maximum of 111 ± 2 HV at three PTCAP passes. The PTCAP process increased not only mechanical strength but also the ductility of the processed tubes, where the highest yield strength (σYS = 320 MPa), ultimate tensile strength (σUTS = 397 MPa) and elongation to failure (δ = 14%) values were obtained at the second pass of PTCAP. However, with increasing number of PTCAP passes to three, δ reached 4% and σYS and σUTS decreased by 31% and 11%, respectively. Findings from the neural based-predictive models indicated that both RBF and MLP can be employed for accurately estimating the mechanical properties of the PTCAP-processed ZK60 Mg alloy.

Graphic Abstract

Keywords

ZK60 Mg alloy PTCAP Ultra-fine grain Microstructure Mechanical properties Predictive intelligent-based techniques 

Notes

Acknowledgements

The authors would like to acknowledge the University of Malaya (UM) and the Ministry of Higher Education, Malaysia (MOHE) for providing necessary resources and facilities for this study. This project was funded with UM Grant Number: RP03A-15AET, and partly supported with FP039-2018A from MOHE.

References

  1. 1.
    F. Froes, D. Eliezer, E. Aghion, JOM 50, 30–34 (1998)CrossRefGoogle Scholar
  2. 2.
    K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255–2262 (1999)CrossRefGoogle Scholar
  3. 3.
    B. Mordike, T. Ebert, Mater. Sci. Eng., A 302, 37–45 (2001)CrossRefGoogle Scholar
  4. 4.
    H. Zhang, L. Xie, X. Shen, T. Shang, R. Luo, X. Li, T. You, J. Wang, N. Huang, Y. Wang, J. Mater. Chem. B 6, 6936–6949 (2018)CrossRefGoogle Scholar
  5. 5.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728–1734 (2006)CrossRefGoogle Scholar
  6. 6.
    D. Griffiths, B. Davis, J. Robson, Metallurg. Mater. Trans. A 49, 321–332 (2018)CrossRefGoogle Scholar
  7. 7.
    I. Ulacia, I. Hurtado, J. Imbert, C. Salisbury, M. Worswick, A. Arroyo, Steel Res. Int. 80, 344–350 (2009)Google Scholar
  8. 8.
    A.A. Luo, Int. Mater. Rev. 49, 13–30 (2004)CrossRefGoogle Scholar
  9. 9.
    S. You, Y. Huang, K.U. Kainer, N. Hort, J. Magnes. Alloys 5, 239–253 (2017)CrossRefGoogle Scholar
  10. 10.
    Z. Ye, X. Teng, G. Lou, G. Zhou, J. Leng, Mater. Res. Exp. 4, 086502 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Matsubara, Y. Miyahara, Z. Horita, T. Langdon, Acta Mater. 51, 3073–3084 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Agnew, J. Horton, T. Lillo, D. Brown, Scripta Mater. 50, 377–381 (2004)CrossRefGoogle Scholar
  13. 13.
    V. Segal, Materials 11, 1175 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Sun, Y.-N. Shi, M.-X. Zhang, K. Lu, Acta Mater. 55, 975–982 (2007)CrossRefGoogle Scholar
  15. 15.
    M.S. Khorrami, N. Saito, Y. Miyashita, M. Kondo, Mater. Sci. Eng., A 744, 349–364 (2019)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng. Rep. 133, 1–59 (2018)CrossRefGoogle Scholar
  17. 17.
    D. Jafarlou, E. Zalnezhad, M. Hassan, M. Ezazi, N. Mardi, A. Hamouda, M. Hamdi, G. Yoon, Mater. Des. 90, 1124–1135 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Bridgman, J. Appl. Phys. 8, 328–336 (1937)CrossRefGoogle Scholar
  19. 19.
    A. K. Ghosh Method of producing a fine grain aluminum alloy using three axes deformation, Google Patents, (1988)Google Scholar
  20. 20.
    Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579–583 (1999)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, P. Prangnell, Scripta Mater. 56, 333–336 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Tyagi, S. Banerjee, Materials Under Extreme Conditions: Recent Trends and Future Prospects (Elsevier, London, 2017)Google Scholar
  23. 23.
    G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Lett. 65, 3009–3012 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Mesbah, G. Faraji, A. Bushroa, Met. Mater. Int. 22, 288–294 (2016)CrossRefGoogle Scholar
  25. 25.
    G. Faraji, A. Babaei, M.M. Mashhadi, K. Abrinia, Mater. Lett. 77, 82–85 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Faraji, M. Mousavi-Mashhadia, J. Adv. Mater. Proc. 1, 23–32 (2013)Google Scholar
  27. 27.
    S. Torbati-Sarraf, R. Mahmudi, Mater. Sci. Eng., A 527, 3515–3520 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang, Y. Nishida, Mater. Sci. Eng., A 513, 122–127 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134–138 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Kang, J.T. Wang, Y. Peng, Mater. Sci. Eng., A 487, 68–73 (2008)CrossRefGoogle Scholar
  31. 31.
    P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45, 4561–4570 (2010)CrossRefGoogle Scholar
  32. 32.
    F. Fereshteh-Saniee, A. Sepahi-Boroujeni, S. Sepahi-Boroujeni, Int. J. Adv. Manuf. Technol. 86, 3471–3482 (2016)CrossRefGoogle Scholar
  33. 33.
    E. Maleki, Mater. Today: Proc. 3, 2197–2206 (2016)Google Scholar
  34. 34.
    M. Bahrami-Karkevandi, B. Nasiri-Tabrizi, K.Y. Wong, R. Ebrahimi-Kahrizsangi, A. Fallahpour, S. Saber-Samandari, S. Baradaran, W.J. Basirun, Mater. Chem. Phys. 224, 47–64 (2019)CrossRefGoogle Scholar
  35. 35.
    S. Hamedi, Z. Kordrostami, A. Yadollahi (2019). Artificial neural network approaches for modeling absorption spectrum of nanowire solar cells. Neural Comput. Appl, 1–11.Google Scholar
  36. 36.
    E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behav. Biomed. Mater. 37, 307–322 (2014)CrossRefGoogle Scholar
  37. 37.
    F.-D. Dumitru, O.F. Higuera-Cobos, J. Cabrera, Mater. Sci. Eng., A 594, 32–39 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. He, Q. Pan, Y. Qin, X. Liu, W. Li, Y. Chiu, J.J. Chen, J. Alloy. Compd. 492, 605–610 (2010)CrossRefGoogle Scholar
  39. 39.
    V. Chuvil’deev, T. Nieh, M.Y. Gryaznov, V. Kopylov, A. Sysoev, J. Alloy. Compd. 378, 253–257 (2004)CrossRefGoogle Scholar
  40. 40.
    R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 501, 105–114 (2009)CrossRefGoogle Scholar
  41. 41.
    G.M. Xie, Z.A. Luo, P. Xue, G.D. Wang, Superplastic behavior of friction stir processed ZK60 magnesium alloy. Mater. Trans. 1111141505 (2011)Google Scholar
  42. 42.
    R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng., A 503, 141–144 (2009)CrossRefGoogle Scholar
  43. 43.
    R.B. Figueiredo, T.G. Langdon, Scripta Mater. 61, 84–87 (2009)CrossRefGoogle Scholar
  44. 44.
    S.A. Torbati-Sarraf, T.G. Langdon, J. Alloy. Compd. 613, 357–363 (2014)CrossRefGoogle Scholar
  45. 45.
    S.A. Torbati-Sarraf, S. Sabbaghianrad, T.G. Langdon, Пиcьмa o мaтepиaлax 5, 287–293 (2015)Google Scholar
  46. 46.
    S.A. Torbati-Sarraf, R. Alizadeh, R. Mahmudi, T.G. Langdon, Mater. Sci. Eng., A 708, 432–439 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Mater. Sci. Eng., A 674, 9–17 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Eftekhari, A. Fata, G. Faraji, M. Mashhadi, J. Alloy. Compd. 742, 442–453 (2018)CrossRefGoogle Scholar
  49. 49.
    H. Abdolvand, G. Faraji, J.S. Karami, M. Baniasadi, Bull. Mater. Sci. 40, 1471–1479 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, A. Bushroa, Met. Mater. Int. 22, 1098–1107 (2016)CrossRefGoogle Scholar
  51. 51.
    A. Zakiyuddin, K. Lee, Arch. Metallur. Mater. 63, 1467–1471 (2018)Google Scholar
  52. 52.
    M. Gan, H. Peng, X.P. Dong, Appl. Math. Model. 36, 2911–2919 (2012)CrossRefGoogle Scholar
  53. 53.
    A. H. Gandomi, A. H. Alavi, Computational Optimization and Applications in Engineering and Industry (Springer, Berlin, 2011), pp. 221–243CrossRefGoogle Scholar
  54. 54.
    W. Liu, J. Dong, P. Zhang, Z. Yao, C. Zhai, W. Ding, J. Mater. Sci. 44, 2916–2924 (2009)CrossRefGoogle Scholar
  55. 55.
    B. Nasiri-Tabrizi, J. Adv. Ceram. 3, 31–42 (2014)CrossRefGoogle Scholar
  56. 56.
    E. Sturcken, J. Nucl. Mater. 82, 39–53 (1979)CrossRefGoogle Scholar
  57. 57.
    Y. Cheong, F. Yam, Y. Ooi, Z. Hassan, Mater. Sci. Semicond. Process. 26, 130–136 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Charfeddine, K. Zehani, L. Besais, A. Korchef, IOP Conference Series: Materials Science and Engineering (IOP Publishing), 012003Google Scholar
  59. 59.
    G. Williamson, W. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  60. 60.
    F. Sun, F.S. Froes, J. Alloy. Compd. 340, 220–225 (2002)CrossRefGoogle Scholar
  61. 61.
    H. Badran, I. Yahia, M.S. Hamdy, N. Awwad, Radiat. Phys. Chem. 130, 85–91 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Bera, S.G. Chowdhury, Y. Estrin, I. Manna, J. Alloy. Compd. 548, 257–265 (2013)CrossRefGoogle Scholar
  63. 63.
    T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, J. Appl. Crystallogr. 34, 298–310 (2001)CrossRefGoogle Scholar
  64. 64.
    J. Gubicza, L. Balogh, R. Hellmig, Y. Estrin, T. Ungár, Mater. Sci. Eng., A 400, 334–338 (2005)CrossRefGoogle Scholar
  65. 65.
    V. Tavakkoli, M. Afrasiab, G. Faraji, M. Mashhadi, Mater. Sci. Eng., A 625, 50–55 (2015)CrossRefGoogle Scholar
  66. 66.
    M. Mesbah, G. Faraji, A. Bushroa, Mater. Sci. Eng., A 590, 289–294 (2014)CrossRefGoogle Scholar
  67. 67.
    A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Arch. Metall. Mater. 62, 159–166 (2017)CrossRefGoogle Scholar
  68. 68.
    J. Tan, M. Tan, Mater. Sci. Eng., A 339, 124–132 (2003)CrossRefGoogle Scholar
  69. 69.
    G. Faraji, M. Mashhadi, H. Kim, Mater. Sci. Eng., A 528, 4312–4317 (2011)CrossRefGoogle Scholar
  70. 70.
    A. Fata, G. Faraji, M. Mashhadi, H. Abdolvand, Trans. Indian Inst. Met. 70, 1369–1376 (2017)CrossRefGoogle Scholar
  71. 71.
    A. Vinogradov, J. Mater. Res. 32, 4362–4374 (2017)CrossRefGoogle Scholar
  72. 72.
    A. Vinogradov, D. Orlov, Y. Estrin, Scripta Mater. 67, 209–212 (2012)CrossRefGoogle Scholar
  73. 73.
    M. Shahzad, L. Wagner, Engineering Against Fracture, (Springer, Place PUblished, 2009), pp. 249–257Google Scholar
  74. 74.
    M. Shahzad, D. Eliezer, W.M. Gan, S.B. Yi, L. Wagner, Materi. Sci. Forum 561, 187–190 (2007)CrossRefGoogle Scholar
  75. 75.
    J. Müller, M. Janeček, S. Yi, J. Čížek, L. Wagner, Int. J. Mater. Res. 100, 838–842 (2009)CrossRefGoogle Scholar
  76. 76.
    F. Nový, M. Janeček, V. Škorík, J. Müller, L. Wagner, Int. J. Mater. Res. 100, 288–291 (2009)CrossRefGoogle Scholar
  77. 77.
    Y. Fouad, M. Mhaede, L. Wagner, Fatigue Fract. Eng. Mater. Struct. 34, 403–407 (2011)CrossRefGoogle Scholar
  78. 78.
    D. Orlov, G. Raab, T.T. Lamark, M. Popov, Y. Estrin, Acta Mater. 59, 375–385 (2011)CrossRefGoogle Scholar
  79. 79.
    X.-M. Feng, T.-T. Ai, Trans. Nonferr. Metals Soc. China 19, 293–298 (2009)CrossRefGoogle Scholar
  80. 80.
    M. Phaniraj, M. Prasad, A. Chokshi, Mater. Sci. Eng., A 463, 231–237 (2007)CrossRefGoogle Scholar
  81. 81.
    S. Amani, G. Faraji, Int. J. Miner. Metall. Mater. 25, 672–681 (2018)CrossRefGoogle Scholar
  82. 82.
    S. Amani, G. Faraji, Met. Mater. Int. 25, 1341–1359 (2019)CrossRefGoogle Scholar
  83. 83.
    S. Amani, G. Faraji, H. Kazemi-Mehrabadi, M. Baghani, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 233, 1196–1205 (2019)CrossRefGoogle Scholar
  84. 84.
    G. Faraji, H. Kim, H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties. (2018)Google Scholar
  85. 85.
    G. Faraji, H. Kim, Mater. Sci. Technol. 33, 905–923 (2017)CrossRefGoogle Scholar
  86. 86.
    A. Salandari-Rabori, A. Zarei-Hanzaki, S. Fatemi, M. Ghambari, M. Moghaddam, J. Alloy. Compd. 693, 406–413 (2017)CrossRefGoogle Scholar
  87. 87.
    G.N. Smith, Probability and Statistics in Civil Engineering: An Introduction (Collins, London, 1986)Google Scholar
  88. 88.
    A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269–276 (2002)CrossRefGoogle Scholar
  89. 89.
    P.P. Roy, K. Roy, QSAR Comb. Sci. 27, 302–313 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • M. Mesbah
    • 1
    • 2
    Email author
  • A. Fattahi
    • 3
  • A. R. Bushroa
    • 1
    • 2
    Email author
  • G. Faraji
    • 4
  • K. Y. Wong
    • 5
  • W. J. Basirun
    • 6
  • A. Fallahpour
    • 5
  • B. Nasiri-Tabrizi
    • 7
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Centre of Advanced Manufacturing and Material Processing (AMMP), Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Mechanical and Manufacturing Engineering, Faculty of EngineeringUniversity Putra MalaysiaSerdangMalaysia
  4. 4.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  5. 5.School of Mechanical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  6. 6.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  7. 7.School of Biosciences, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia

Personalised recommendations