Advertisement

Cyclic Plastic Deformation Response of Nanocrystalline BCC Iron

  • Ashutosh Rajput
  • Surajit Kumar PaulEmail author
Article

Abstract

Cyclic plastic deformation behavior of nanocrystalline body-centered cubic (BCC) iron is investigated using molecular dynamics simulation. The formation of X-junction and Y-junction during deformation causes the faster mobility of dislocation, which results in softening behavior of the material. In addition, the generation of vacancy defects behind the moved perfect screw dislocation represents the jerky deformation behavior of nanocrystalline BCC iron. The study also highlights the distribution of atomic strain. The grain boundary sliding may result in local atomic strain distribution at the grain boundary. Whereas the region of maximum defects activity shows a higher distribution of atomic strain. The vivid story of crystalline defects in BCC iron helps to develop a deep understanding of cyclic plastic deformation response in the atomic scale.

Graphic Abstract

Keywords

Cyclic plastic deformation Nanocrystalline BCC iron Dislocation Vacancy Twin Molecular dynamics simulation 

Notes

References

  1. 1.
    I. Salehinia, D.F. Bahr, Int. J. Plast. 52, 133–146 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Mortazavi, G. Cuniberti, Nanotechnology 25(21), 215704–215708 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Zhou, W. Liang, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218(6), 599–606 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Dutta, Acta Mater.125, S221–S222 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Xie, F. Yin, T. Yu, G. Lu, Y. Zhang, Acta Mater. 85, 191–198 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Sainath, B.K. Choudhary, Comput. Mater. Sci. 111, 406–415 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Sainath, B.K. Choudhary, Mater. Sci. Eng. A 640, 98–105 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Sainath, B.K. Choudhary, T. Jayakumar, Comput. Mater. Sci. 104, 76–83 (2015)CrossRefGoogle Scholar
  9. 9.
    H.S. Park, K. Gall, J.A. Zimmerman, J. Mech. Phys. Solids 54, 1862–1881 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Diao, K. Gall, M.L. Dunn, Nat. Mater. 2, 656–660 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Saha, M. Abdul Motalab, M. Mahboob, Comput. Mater. Sci. 136, 52–59 (2017)CrossRefGoogle Scholar
  12. 12.
    F. Mompiou, M. Legros, A. Boé, M. Coulombier, J.P. Raskin, T. Pardoen, Acta Mater. 61, 205–216 (2013)CrossRefGoogle Scholar
  13. 13.
    W.S. Ko, S.B. Maisel, B. Grabowski, J.B. Jeon, J. Neugebauer, Acta Mater. 123, 90–101 (2017)CrossRefGoogle Scholar
  14. 14.
    J.Y. Kim, J.R. Greer, Acta Mater. 57, 5245–5253 (2009)CrossRefGoogle Scholar
  15. 15.
    J.Y. Kim, D. Jang, J.R. Greer, Int. J. Plast. 28, 46–52 (2012)CrossRefGoogle Scholar
  16. 16.
    C.J. Healy, G.J. Ackland, Acta Mater. 70, 105–112 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Marian, W. Cai, V.V. Bulatov, Nat. Mater. 3, 158–163 (2004)CrossRefGoogle Scholar
  18. 18.
    K. Ito, V. Vitek, Philos. Mag. A Phys. Condens. Matter. Struct. Defects Mech. Prop. 81, 1387–1407 (2001)Google Scholar
  19. 19.
    D. Zhu, H. Zhang, D.Y. Li, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 4207–4217 (2013)CrossRefGoogle Scholar
  20. 20.
    A.R. Setoodeh, H. Attariani, Mater. Lett. 62, 4266–4268 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Nat. Commun. 5, 1–10 (2014)Google Scholar
  22. 22.
    P. Hirel, Atomsk Comput. Phys. Commun. 197, 212–219 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  24. 24.
    M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Philos. Mag. 83, 3977–3994 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)Google Scholar
  27. 27.
    A. Stukowski, K. Albe, Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRefGoogle Scholar
  28. 28.
    J.Y. Kim, D. Jang, J.R. Greer, Acta Mater. 58, 2355–2363 (2010)CrossRefGoogle Scholar
  29. 29.
    G.R. Speich, A.J. Schwoeble, W.C. Leslie, Metall. Trans. 3, 2031–2037 (1972)CrossRefGoogle Scholar
  30. 30.
    V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Acta Mater. 49, 2713–2722 (2001)CrossRefGoogle Scholar
  31. 31.
    C.H. Ersl, I.R. Vatne, C. Thaulow, Model. Simul. Mater. Sci. Eng. 20, 075004 (2012)CrossRefGoogle Scholar
  32. 32.
    G. Aral, Y. Wang, S. Ogata, A.C.T. Van Duin, J. Appl. Phys. 135104, 1–14 (2017)Google Scholar
  33. 33.
    Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1–62 (2012)CrossRefGoogle Scholar
  34. 34.
    G. Sainath, B.K. Choudhary, Phys. Lett. Sect. A Genral Atomic Solid State Phys. 382, 1047–1051 (2018)Google Scholar
  35. 35.
    F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923–2927 (2007)CrossRefGoogle Scholar
  36. 36.
    A. Rajput, P. Ghosal, A. Kumar, S.K. Paul, J. Mol. Model. 25, 153 (2019)CrossRefGoogle Scholar
  37. 37.
    V.V. Bulatov, W. Cai, Phys. Rev. Lett. 89, 9–12 (2002)CrossRefGoogle Scholar
  38. 38.
    D. Kaufmann, R. Mönig, C.A. Volkert, O. Kraft, Int. J. Plast. 27, 470–478 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Li, B. Lu, H. Zhou, C. Tian, Y. Xian, G. Hu, R. Xia, Phys. Lett. Sect. A Genral Atomic Solid State Phys. 383, 1922–1928 (2019)Google Scholar
  40. 40.
    S.K. Paul, Comput. Mater. Sci. 150, 24–32 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology PatnaBihta, PatnaIndia

Personalised recommendations