Advertisement

Overview of Small Punch Test

  • S. ArunkumarEmail author
Article
  • 83 Downloads

Abstract

Small Punch Test (SPT) is an evolving small specimen test technique which has the potential to extract the mechanical properties from small volume specimens. This test method is used to determine the in situ mechanical properties of components in service for measuring the structural integrity and residual life. The pre-requisite for using this test is to establish correlations between SPT and conventional tests in priori. A number of correlations have been developed between traditional tests and SPT results for determining mechanical properties. The validity of these correlations have to be examined, as these are developed from a specified set of materials and testing conditions. To evaluate SPT and the developed correlations, it is crucial to understand the fundamentals of this test method, the different regimes of deformation experienced by the specimen and its sensitivity for various testing parameters. The attempt of this work is to relook the SPT as a whole and its potential to measure the different mechanical properties. This work lists the various SPT configurations, materials used in literature and the correlations developed. In addition, the influence of test parameters on SPT response, the viability of empirical or analytical relations used to extract mechanical properties and the general issues in SPT is discussed.

Graphic Abstract

Keywords

Small punch test Tensile properties Creep Fracture 

Notes

References

  1. 1.
    M.P. Manahan, A.S. Argon, O.K. Harling, The development of miniaturized disk bend test for the determination of post-irradiation mechanical properties. J. Nucl. Mater. 103 & 104, 1545–1550 (1981)CrossRefGoogle Scholar
  2. 2.
    Y. Peng, L. Cai, H. Chen, C. Bao, A new method based on energy principle to predict uniaxial stress–strain relations of ductile materials by small punch testing. Int. J. Mech. Sci. 138–139, 244–249 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Andrés, T. García, S. Cicero, R. Lacalle, J.A. Álvarez, A. Martín-Meizoso, J. Aldazabal, A. Bannister, A. Klimpel, Characterization of heat affected zones produced by thermal cutting processes by means of Small Punch tests. Mater. Charact. 119, 55–64 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Yang, X. Wang, X. Ling, D. Wang, Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results Phys. 7, 1412–1421 (2017)CrossRefGoogle Scholar
  5. 5.
    S.-H. Chi, J.-H. Hong, I.-S. Kim, Evaluation of irradiation effects of 16 MeV proton-irradiated 12Cr–1MoV steel by small punch (SP) tests. Scr. Metall. Mater. 30(12), 1521–1525 (2000)CrossRefGoogle Scholar
  6. 6.
    C. Rodríguez, E. Cárdenas, F.J. Belzunce, C. Betegón, Fracture characterization of steels by means of the small punch test. Exp. Mech. 53(3), 385–392 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Abendroth, M. Kuna, Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput. Mater. Sci. 28(3–4), 633–644 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Altstadt, H.E. Ge, V. Kuksenko, M. Serrano, M. Houska, M. Lasan, M. Bruchhausen, J.-M. Lapetite, Y. Dai, Critical evaluation of the small punch test as a screening procedure for mechanical properties. J. Nucl. Mater. 472, 186–195 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Abendroth, S. Soltysiak, Assessment of Material Properties by means of Small Punch Test, in Recent Trends in Fracture and Damage Mechanics, ed. by G. Hütter, L. Zybell (Springer, New York, 2016), pp. 127–157CrossRefGoogle Scholar
  10. 10.
    K. Li, J. Peng, C. Zhou, Construction of whole stress-strain curve by small punch test and inverse finite element. Results Phys. 11, 440–448 (2018)CrossRefGoogle Scholar
  11. 11.
    C.S. Catherine, J. Messier, P. Christophe, S. Rosinski, J. Foulds, EPRI-CEA Finite Element Simulation Benchmark and Inverse Method for the Estimation of Elastic Plastic Behavior Small Specimen Test Techniques, ASTM STP 1418, vol. 4 (ASTM International, West Conshohocken, 2002), pp. 350–370Google Scholar
  12. 12.
    S. Arunkumar, R.V. Prakash, Estimation of tensile properties of pressure vessel steel through automated ball indentation and small punch test. Trans. Indian Inst. Met. 69, 1245–1256 (2016)CrossRefGoogle Scholar
  13. 13.
    Small Punch Test Method for Metallic Materials, CEN workshop agreement, CWA 15627:2007 EGoogle Scholar
  14. 14.
    I. Cuesta, C. Rodríguez, T. García, J. Alegre, Effect of confinement level on mechanical behaviour using the small punch test. Eng. Fail. Anal. 58, 206–211 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Turba, R.C. Hurst, P. Hähner, Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique. J. Nucl. Mater. 428(1–3), 76–81 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Rasche, S. Strobl, M. Kuna, R. Bermejo, T. Lube, Determination of strength and fracture toughness of small ceramic discs using the small punch test and the ball-on-three-balls test. Proc. Mater. Sci. 3, 961–966 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J.-M. Lapetite, S. Ripplinger, R. de Haan, Recent developments in small punch testing: tensile properties and DBTT. Theor. Appl. Fract. Mech. 86, Part A, 2–10 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Ruan, P. Spätig, M. Victoria, Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests. J. Nucl. Mater. 307, Part 1, 236–239 (2002)CrossRefGoogle Scholar
  19. 19.
    G.E. Lucas, The development of small specimen mechanical test techniques. J. Nucl. Mater. 117(C), 327–339 (1983)CrossRefGoogle Scholar
  20. 20.
    S. Haroush, E. Priel, D. Moreno, A. Busiba, I. Silverman, A. Turgeman, R. Shneck, Y. Gelbstein, Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater. Des. 83, 75–84 (2015)CrossRefGoogle Scholar
  21. 21.
    M.F. Moreno, G. Bertolino, A. Yawny, The significance of specimen displacement definition on the mechanical properties derived from small punch test. Mater. Des. 95, 623–631 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Rasche, M. Kuna, Improved small punch testing and parameter identification of ductile to brittle materials. Int. J. Press. Vessels Pip. 125, 23–34 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Kameda, X. Mao, Small-Punch and TEM-disc testing techniques and their application to characterization of radiation damage. J. Mater. Sci. 27, 983–989 (1992)CrossRefGoogle Scholar
  24. 24.
    X. Mao, H. Takahashi, Development of a further-miniaturized specimen of 3 mm diameter for tem disk (Ф 3 mm) small punch tests. J. Nucl. Mater. 150, 42–52 (1987)CrossRefGoogle Scholar
  25. 25.
    M. Eto, H. Takahashi, T. Misawa, M. Suzuki, Y. Nishiyama, K. Fukaya, S. Jitsukawa, Development of a miniaturized bulge test (small punch test) for post-irradiation mechanical property evaluation. ASTM STP 1204, 241–255 (1993)Google Scholar
  26. 26.
    E. Fleury, J.S. Ha, Small punch tests on steels for steam power plant (II). KSME Int. J. 12(5), 827–835 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Jitsukawa, Development of a miniaturized bulge test (small punch test) for post-irradiation mechanical property evaluation. ASTM STP 1204, 241–255 (1993)Google Scholar
  28. 28.
    M.R. Bayoumi, M.N. Bassim, Study of the relationship between fracture toughness (JIc) and bulge ductility. Int. J. Fract. 23, 71–79 (1983)CrossRefGoogle Scholar
  29. 29.
    J.M. Baik, J. Kameda, O. Buck, Development of small punch tests for ductile–brittle transition temperature measurement of temper embrittled Ni–Cr steels. ASTM STP 888, 92–111 (1986)Google Scholar
  30. 30.
    B. Ule, T. Sustar, F. Dobes, K. Milicka, V. Bicego, S. Tettamanti, K. Maile, C. Schwarzkopf, M.P. Whelan, R.H. Kozlowski, J. Klaput, Small punch test method assessment for the determination of the residual creep life of service exposed components: outcomes from an interlaboratory exercise. Nucl. Eng. Des. 192, 1–11 (1999)CrossRefGoogle Scholar
  31. 31.
    T. Izaki, T. Kobayashi, J. Kusumoto, A. Kanaya, A creep life assessment method for boiler pipes using small punch creep test. Int. J. Press. Vessels Pip. 86, 637–642 (2009)CrossRefGoogle Scholar
  32. 32.
    R.V. Prakash, S. Arunkumar, Evaluation of damage in materials due to fatigue cycling through static and cyclic small punch testing, in Small Specimen Test Techniques, ed. by M.A. Sokolov, E. Lucon (West Conshohocken, ASTM International, 2014), pp. 168–186Google Scholar
  33. 33.
    Prakash R V, Arunkumar S. Evaluation of fatigue data through miniature specimen test techniques, in ASME Pressure Vessels and Piping Conference, Volume 1A: Codes and Standards: V01AT01A059 (2015)Google Scholar
  34. 34.
    R.V. Prakash, S. Arunkumar, Influence of friction on the response of small punch test. Trans. Indian Inst. Met. 69(2), 617–622 (2016)CrossRefGoogle Scholar
  35. 35.
    CEN. CWA 15627: small punch test method for metallic materials. Technical reports (CEN, Brussels, 2006)Google Scholar
  36. 36.
    European Committee for Standardization, Small punch test method for metallic materials, CEN workshop agreement, CWA 15627:2007 E (2007)Google Scholar
  37. 37.
    K.K. Dwivedi, K.K. Pathak, M. Panday, A.H. Yegneshwaran, E. Ramadasan, Influence of material properties on small punch test using curved specimens. Arch. Appl. Sci. Res. 2(6), 211–218 (2010)Google Scholar
  38. 38.
    I. Simonovski, S. Holmström, M. Bruchhausen, Small punch tensile testing of curved specimens: finite element analysis and experiment. Int. J. Mech. Sci. 120, 204–213 (2017)CrossRefGoogle Scholar
  39. 39.
    I.I. Cuesta, C. Rodríguez, T.E. García, J.M. Alegre, Effect of confinement level on mechanical behaviour using the small punch test. Eng. Fail. Anal. 58(1), 206–211 (2015)CrossRefGoogle Scholar
  40. 40.
    K.K. Pathak, K.K. Dwivedi, M. Shukla, E. Ramadasan, Influence of key test parameters on SPT results. Indian J. Eng. Mater. Sci. 16, 385–389 (2009)Google Scholar
  41. 41.
    C. Kannan, S. Bhattacharya, D.K. Sehgal, R.K. Pandey, Effect of specimen thickness and punch diameter in evaluation of small punch test parameters toward characterization of mechanical properties of Cr–Mo steels. J. Test. Eval. 42(6), 1–9 (2014).  https://doi.org/10.1520/jte20130299. ISSN 0090-3973
  42. 42.
    S.M. Kurtz, M. Herr, A.A. Edidin, The effect of specimen thickness on the mechanical behavior of UHMWPE characterized by the small punch test, in Crosslinked and Thermally Treated Ultra High Molecular Weight Polyethylene for Joint Replacements, ASTM STP 1445, ed. by S. M. Kurtz, R. Gsell, and J. Martell (ASTM International, West Conshohocken, PA, 2003) pp. 192–205Google Scholar
  43. 43.
    R. Lacalle, J. Álvarez, F. Guitérrez-Solana, Analysis of key factors for the interpretation of small punch test results. Fatigue Fract. Eng. Mater. Struct. 31, 841–849 (2008)CrossRefGoogle Scholar
  44. 44.
    P. Dymáček, Recent developments in small punch testing: applications at elevated temperatures. Theor. Appl. Fract. Mech. 86(1), 25–33 (2016)CrossRefGoogle Scholar
  45. 45.
    M.L. Villarraga, A.A. Edidin, M. Herr, S.M. Kurtz, Multiaxial fatigue behavior of oxidized and unoxidized UHMWPE during cyclic small punch testing at body temperature. J. ASTM Int. 1(1), Paper ID 11218 (2004)Google Scholar
  46. 46.
    M. Abendroth, M. Kuna, Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng. Fract. Mech. 73(6), 710–725 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Siegl, P. Haušild, A. Janča, R. Kopřiva, Fractographic aspects of small punch test results. Proc. Mater. Sci. 3, 912–917 (2014)CrossRefGoogle Scholar
  48. 48.
    J. Siegl, P. Hausild, A. Janca, R. Kopriva, M. Kytka, Characterization of mechanical properties by small punch test. Key Eng. Mater. 606, 15–18 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Dooley, G.E. Lucas, J.W. Sheckherd, Small scale ductility tests. J. Nucl. Mater. 103 & 104, 1533–1538 (1981)CrossRefGoogle Scholar
  50. 50.
    M.L. Hamilton, F.H. Huang, Use of the disk bend test to assess the irradiation performance of structural alloys, in The Use of Small-Scale Specimens for Testing Irradiated Material, ASTM STP 888, ed. by W.R. Corwin, G.E. Lucas (American Society for Testing and Materials, Philadelphia, 1986), pp. 5–16CrossRefGoogle Scholar
  51. 51.
    V.L. Giddings, S.M. Kurtz, C.W. Jewett, J.R. Foulds, A.A. Edidin, A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone used in total joint replacement. Biomaterials 22, 1875–1881 (2001)CrossRefGoogle Scholar
  52. 52.
    J.F. Chica, P.M.B. Díez, M.P. Calzada, Improved correlation for elastic modulus prediction of metallic materials in the small punch test. Int. J. Mech. Sci. 134, 112–122 (2017)CrossRefGoogle Scholar
  53. 53.
    E. Budzakoska, D.G. Carr, P.A. Stathers, H. Li, R.P. Harrison, A.K. Hellier, W.Y. Yeung, Predicting the J integral fracture toughness of Al 6061 using the small punch test. Fatigue Fract. Eng. Mater. Struct. 30, 796–807 (2007)CrossRefGoogle Scholar
  54. 54.
    E. Altstadt, M. Houska, I. Simonovski, M. Bruchhausen, S. Holmstrom, R. Lacalle, On the estimation of ultimate tensile stress from small punch testing. Int. J. Mech. Sci. 136, 1–19 (2017)Google Scholar
  55. 55.
    J.M. Alegre, R. Lacalle, I.I. Cuesta, J.A. Alvarez, Different methodologies to obtain the fracture properties of metallic materials using pre-notched small punch test specimens. Theor. Appl. Fract. Mech. 86, 11–18 (2016)CrossRefGoogle Scholar
  56. 56.
    T.D. Shikalgar, B.K. Dutta, J. Chattopadhyay, Assessment of fracture resistance data using p-SPT specimens. Theoret. Appl. Fract. Mech. 98, 167–177 (2018)CrossRefGoogle Scholar
  57. 57.
    J.B. Ju, J. Jang, D. Kwon, Evaluation of Fracture toughness by small-punch testing techniques using sharp notched specimens. Int. J. Press. Vessels Pip. 80, 221–228 (2003)CrossRefGoogle Scholar
  58. 58.
    E. Cardenas, F.J. Belzunce, D. Rodriguez, I. Penuelas, C. Betegon, Application of the small punch test to determine the fracture toughness of metallic materials. Fatigue Fract. Eng. Mater. Struct. 00, 1–10 (2011)Google Scholar
  59. 59.
    T.E. Garcia, C. Rodriguez, F.J. Belzunce, I.I. Cuesta, Development of a new methodology for estimating the CTOD of structural steels using the small punch test. Eng. Failure Anal. 50, 88–99 (2015)CrossRefGoogle Scholar
  60. 60.
    J.M. Alegre, I.I. Cuesta, H.L. Barbachano, Determination of the fracture properties of metallic materials using pre-cracked small punch tests. Fatigue Fract. Engng. Mater. Struct. 38, 104–112 (2014)CrossRefGoogle Scholar
  61. 61.
    I.I. Cuesta, A. Willig, A. Díaz, E. Martínez-Pañeda, J.M. Alegre, Pre-notched dog bone small punch specimens for the estimation of fracture properties. Eng. Fail. Anal. 96, 236–240 (2019)CrossRefGoogle Scholar
  62. 62.
    F. Abe, Development of creep-resistant steels and alloys for use in power plants, in Structural Alloys for Power Plants, ed. by S. Shirzadi, S. Jackson (Woodhead Publishing Series in Energy, Woodhead Publishing, Cambridge, 2014), pp. 250–293CrossRefGoogle Scholar
  63. 63.
    F. Dobeš, K. Milička, Comparison of conventional and small punch creep tests of mechanically alloyed Al–C–O alloys. Mater. Charact. 59(7), 961–964 (2008)CrossRefGoogle Scholar
  64. 64.
    M. Bruchhausen, E. Altstadt, T. Austin, P. Dymacek, S. Holmström, S. Jeffs, R. Lacalle, R. Lancaster, K. Matocha, J. Petzova, European standard on small punch testing of metallic materials. Ubiquity Proc. 1(S1), 11 (2018)CrossRefGoogle Scholar
  65. 65.
    T.H. Hyde, W. Sun, J.A. Williams, Requirements for and use of miniature test specimens to provide mechanical and creep properties of materials: a review. Int. Mater. Rev. 52(4), 213–255 (2007)CrossRefGoogle Scholar
  66. 66.
    J.P. Rouse, F. Cortellino, W. Sun, T.H. Hyde, J. Shingledecker, Small punch creep testing: review on modelling and data interpretation. Mater. Sci. Technol. 29(11), 1328–1345 (2013)CrossRefGoogle Scholar
  67. 67.
    K. Matocha, R. Hurst, Small punch testing—the transition from a code of practice to a European testing standard. Key Eng. Mater. 734, 3–22 (2017)CrossRefGoogle Scholar
  68. 68.
    Y. Li, R. Sturm, Determination of creep properties from small punch test, in Proceedings of PVP2008,2008 ASME Pressure Vessels and Piping Division Conference, July 27–31, 2008, Chicago, IL, USAGoogle Scholar
  69. 69.
    R.J. Lancaster, W.J. Harrison, G. Norton, An analysis of small punch creep behavior in the γ titanium aluminide Ti–45Al–2Mn–2Nb. Mater. Sci. Eng., A 626, 263–274 (2015)CrossRefGoogle Scholar
  70. 70.
    S.P. Jeffs, R.J. Lancaster, Elevated temperature creep deformation of a single crystal superalloy through the small punch creep method. Mater. Sci. Eng., A 626, 330–337 (2015)CrossRefGoogle Scholar
  71. 71.
    S. Holmström, Y. Li, P. Dymacek, E. Vacchieri, S.P. Jeffs, R.J. Lancaster, D. Omacht, Z. Kubon, E. Anelli, J. Rantala, A. Tonti, S. Komazaki, Naveena, M. Bruchhausen, R.C. Hurst, P. Hähner, M. Richardson, D. Andres, Creep strength and minimum strain rate estimation from small punch creep tests. Mater. Sci. Eng.: A 731, 161–172 (2018)CrossRefGoogle Scholar
  72. 72.
    D. Andrés, R. Lacalle, J.A. Álvarez, Creep property evaluation of light alloys by means of the small punch test: creep master curves. Mater. Des. 96, 122–130 (2016)CrossRefGoogle Scholar
  73. 73.
    P. Dymáček, F. Dobeš, Y. Jirásková, N. Pizúrová, M. Friák, Tensile, creep and fracture testing of prospective Fe–Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 99, 18–26 (2019)CrossRefGoogle Scholar
  74. 74.
    C. Wen, T. Xu, K. Guan, Correlation factor study of small punch creep test and its life prediction. Materials 9(10), 796 (2016)CrossRefGoogle Scholar
  75. 75.
    S. Yang, Y. Zheng, Y. Duan, X. Ling, Creep characteristics and deformation analysis of service-exposed material using small punch creep test. Eng. Fract. Mech. 195, 242–252 (2018)CrossRefGoogle Scholar
  76. 76.
    Z. Yang, Z. Wang, Relationship between strain and central deflection in small punch creep specimens. Int. J. Press. Vessels Pip. 80, 397–404 (2003)CrossRefGoogle Scholar
  77. 77.
    F. Hou, H. Xu, Y. Wang, L. Zhang, Determination of creep property of 1.25Cr0.5Mo pearlitic steels by small punch test. Eng. Fail. Anal. 28, 215–221 (2013)CrossRefGoogle Scholar
  78. 78.
    T.H. Hyde, M. Stoyanov, W. Sun, C.J. Hyde, On the interpretation of results from small punch creep tests. J. Strain Anal. Eng. Des. 45(3), 141–164 (2010)CrossRefGoogle Scholar
  79. 79.
    Z. Zhou, Y. Zheng, X. Ling, R. Hu, J. Zhou, A study on influence factors of small punch creep test by experimental investigation and finite element analysis. Mater. Sci. Eng., A 527(10–11), 2784–2789 (2010)CrossRefGoogle Scholar
  80. 80.
    D.T. Blagoeva, R.C. Hurst, Application of the CEN (European Committee for Standardization) small punch creep testing code of practice to a representative repair welded P91 pipe. Mater. Sci. Eng., A 510–511, 219–223 (2009)CrossRefGoogle Scholar
  81. 81.
    L. Zhao, H. Jing, L. Xu, Y. Han, J. Xiu, Y. Qiao, Evaluating of creep property of distinct zones in P92 steel welded joint by small punch creep test. Mater. Des. 47, 677–686 (2013)CrossRefGoogle Scholar
  82. 82.
    M.D. Mathew, J. Ganesh Kumar, V. Ganesan, small punch creep studies for optimization of nitrogen content in 316LN SS for enhanced creep resistance. Met. & Mat. Trans. A 45A, 731–737 (2014)CrossRefGoogle Scholar
  83. 83.
    E. Tasdighi, H. Nobakhti, N. Soltani, Application of small punch test in predicting the axial fatigue life of 304 stainless steel sheets. Exp. Tech., 1–9 (2015)Google Scholar
  84. 84.
    D.T.S. Lewis, R.J. Lancaster, S.P. Jeffs, H.W. Illsley, S.J. Davies, G.J. Baxter, Characterising the fatigue performance of additive materials using the small punch test. Mater. Sci. Eng., A 754, 719–727 (2019)CrossRefGoogle Scholar
  85. 85.
    R.J. Lancaster, S.P. Jeffs, H.W. Illsley, C. Argyrakis, R.C. Hurst, G.J. Baxter, Development of a novel methodology to study fatigue properties using the small punch test. Mater. Sci. Eng., A 748, 21–29 (2019)CrossRefGoogle Scholar
  86. 86.
    R.J. Lancaster, H. Illsley, R.C. Hurst, S.P. Jeffs, G.J. Baxter, A novel approach to small punch fatigue testing. Key Eng. Mater. 734, 61–69 (2017)CrossRefGoogle Scholar
  87. 87.
    R.J. Lancaster, S.P. Jeffs, Small Punch Creep (INTECH Open Science, London, 2018), pp. 151–172Google Scholar
  88. 88.
    X. Mao, M. Saito, H. Takahashi, Small punch test to predict ductile fracture toughness JIC, and brittle fracture toughness, KIC. Scr. Metall. Mater. 25, 2481–2485 (1991)CrossRefGoogle Scholar
  89. 89.
    Y. Xu, Z. Zhao, A Modified miniature disk test for determining material mechanical properties. J. Test. Eval. JTEVA 23(4), 300–306 (1995)CrossRefGoogle Scholar
  90. 90.
    J. Cheon, I. Kim, Initial deformation during small punch testing. J. Test. Eval. 24(4), 255–262 (1996)CrossRefGoogle Scholar
  91. 91.
    E. Fleury, J.S. Ha, Small punch test to estimate the mechanical properties of steel for steam power plant I: mechanical strength. Int. J. Pres. Vessels. Piping 75, 699–706 (1998)CrossRefGoogle Scholar
  92. 92.
    W.K. Lee, D.R. Metzger, A. Donner, O.E. Lepik, The use of a small punch test procedure to determine mechanical properties, in Small Specimen Test Techniques, ASTM STP 1329, ed. by W.R. Corwin, S.T. Rosinski, E. van Walle (American Society for Testing and Materials, West Conshohocken, 1998)Google Scholar
  93. 93.
    A. Husain, D.K. Sehgal, R.K. Pandey, Design of a simple, versatile, small-specimen punch test setup for determination of the mechanical behavior of materials. Exp. Tech. 26, 33–38 (2002)CrossRefGoogle Scholar
  94. 94.
    J.S. Lee, I.S. Kim, Evaluation of mechanical properties of RPV clad by small punch tests. J. Korean Nucl. Soc. 34, 574–585 (2002)Google Scholar
  95. 95.
    M. Eskner, R. Sandstrom, Mechanical property evaluation using the small punch test. J. Test. Eval. 31(4), 1–8 (2004)Google Scholar
  96. 96.
    D. Finarelli, M. Roedig, M. Carsughi, Small punch tests on austenitic and martensitic steels irradiated in a spallation environment with 530 MeV protons. J. Nucl. Mater. 328(2–3), 146–150 (2004)CrossRefGoogle Scholar
  97. 97.
    M.A. Contreras, C. Rodriguez, F.J. Belzunce, C. Betegon, Use of small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract. Eng. Mater. Struct. 31, 727–737 (2008)CrossRefGoogle Scholar
  98. 98.
    I. Peñuelas, I.I. Cuesta, C. Betegón, C. Rodríguez, F.J. Belzunce, Inverse determination of the elastoplastic and damage parameters on small punch tests. Fatigue Fract. Eng. Mater. Struct. 32, 872–885 (2009)CrossRefGoogle Scholar
  99. 99.
    J. Isselin, T. Shoji, Yield strength evaluation by small-punch test. J. Test. Eval. 37(6), Paper ID 101657 (2009)Google Scholar
  100. 100.
    I.I. Cuesta, J.M. Alegre, R. Lacalle, Determination of the Gurson–Tvergaard damage model parameters for simulating small punch tests. Fatigue Fract. Eng. Mater. Struct. 33, 703–713 (2010)Google Scholar
  101. 101.
    X. Zhao, J. Zhang, Small punch test of U-shaped notch of TC4 titanium alloy and its numerical simulation. J. Mater. Eng. Perform. 22, 3182 (2013)CrossRefGoogle Scholar
  102. 102.
    T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloy. Compd. 582, 708–717 (2014)CrossRefGoogle Scholar
  103. 103.
    S.H. Hong, M.-G. Seo, C.H. Jang, K.-S. Lee, Evaluation of the effects of thermal aging of austenitic stainless steel welds using small punch test. Proc. Eng. 130, 1010–1018 (2015)CrossRefGoogle Scholar
  104. 104.
    X. Mao, H. Takahashi, T. Kodaira, Estimation of mechanical properties of irradiated nuclear pressure vessel steel by use of subsized CT specimen and small punch specimen. Scr. Metall. 25, 2487–2490 (1991)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmrita Vishwa VidyapeethamAmritapuriIndia

Personalised recommendations