Advertisement

Metals and Materials International

, Volume 25, Issue 6, pp 1488–1499 | Cite as

Effect of Strontium and Magnesium Additions on the Microstructure and Mechanical Properties of Al–12Si Alloys

  • Ali Paşa HekimoğluEmail author
  • Merve Çalış
  • Gizem Ayata
Article
  • 144 Downloads

Abstract

In this study, a binary Al–12Si, eight ternary Al–12Si–Sr, and six quaternary Al–12Si–0.1Sr–(0.2–1)Mg alloys were produced by permanent mold casting. It was observed that microstructure of the binary alloy consisted of the phases of aluminum rich α grains (dendrites), primary silicon, plate like β and eutectic Al–Si containing needle like silicon particles. The ternary alloys have fine and globular (modified) eutectic silicon particles and higher volume fraction of α (Al) dendrites than binary alloys. They also contained Al4Sr phase after 0.02 wt% Sr, in addition to the phases in the binary alloy. This phase got coarse when the strontium ratio exceeded 0.1%. It was observed that the plate like β phase seen in the binary alloys transformed into the fibrous form δ phase in the ternary alloys. Magnesium addition resulted in transformation of δ phase into script like π phase, and the formation of lamellar like Mg2Si phase when the ratio of it in the quaternary alloys reached the 0.6 wt%. The lamellar like form of Mg2Si phase changed to Chinese-script type after the 0.6 wt% Mg. The results showed that hardness, yield and tensile strength of the Al–12Si–Sr alloys increased with increasing strontium content up to 0.1 wt%. The results also showed that hardness of the quaternary alloys increased with increasing magnesium content, while yield and tensile strength increased only up to 0.6 wt% Mg.

Graphic Abstract

Keywords

Al–12Si based alloys Microstructure Hardness Mechanical properties Fracture behavior 

Notes

Acknowledgements

This work was supported by Research Fund of the Recep Tayyip Erdoğan University. Project No. FYL-2016-685.

References

  1. 1.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Int. J. Fatigue 70, 383–394 (2015)Google Scholar
  2. 2.
    A.M.A. Mohamed, F.H. Samuel, S. Al Kahtani, Mater. Sci. Eng. A-Struct. 577, 64–72 (2013)Google Scholar
  3. 3.
    M. Tebib, A.M. Samuel, F. Ajersch, X.G. Chen, Mater. Charact. 89, 112–123 (2014)Google Scholar
  4. 4.
    C.Y. Jeong, Mater. Trans. 54(4), 588–594 (2013)Google Scholar
  5. 5.
    K.G. Basavakumar, P.G. Mukunda, M. Chakraborty, Int. J. Mater. Res. 99(8), 900–906 (2008)Google Scholar
  6. 6.
    J.Y. Hwang, H.W. Doty, M.J. Kaufman, Mater. Sci. Eng. A-Struct. 488(1–2), 496–504 (2008)Google Scholar
  7. 7.
    A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Mater. Sci. Eng. A-Struct. 413–414, 243–248 (2005)Google Scholar
  8. 8.
    Y.H. Cho, H.-C. Lee, K.H. Oh, A.K. Dahle, Mater. Sci. Eng. A-Struct. 39(10), 2435–2448 (2008)Google Scholar
  9. 9.
    M. De Giovanni, J.A. Kaduk, P. Srirangam, JOM 71(1), 426–434 (2019)Google Scholar
  10. 10.
    M. Zarif, B. Mckay, P. Schumacher, Metall. Mater. Trans. A 42(6), 1684–1691 (2011)Google Scholar
  11. 11.
    H. Liao, W. Huang, Q. Wang, F. Jia, J. Mater. Sci. Technol. 30(2), 146–153 (2014)Google Scholar
  12. 12.
    H.S. Kang, W.Y. Yoon, K.H. Kim, M.H. Kim, Y.P. Yoon, Mater. Sci. Eng. A-Struct. 404(1–2), 117–123 (2005)Google Scholar
  13. 13.
    S. Ji, D. Watson, Z. Fan, M. White, Mater. Sci. Eng. A-Struct. 556, 824–833 (2012)Google Scholar
  14. 14.
    K. Wang, H.Y. Jiang, Q.D. Wang, W.J. Ding, Mater. Sci. Eng. A-Struct. 666, 264–268 (2016)Google Scholar
  15. 15.
    I. Alfonso, C. Maldonado, G. Gonzalez, A. Bedolla, J. Mater. Sci. 41(7), 1945–1952 (2006)Google Scholar
  16. 16.
    C.H. Caceres, A. Blake, Phys. Status Solidi. 194(1), 147–158 (2002)Google Scholar
  17. 17.
    S. Nafisi, D. Emadi, R. Ghomashchi, Mater. Sci. Technol. 24(6), 718–724 (2008)Google Scholar
  18. 18.
    Q.G. Wang, C.J. Davidson, J. Mater. Sci. 36(3), 739–750 (2001)Google Scholar
  19. 19.
    C.H. Caceres, C.J. Davidson, J.R. Griffiths, Q.G. Wang, Metall. Mater. Trans. A 30(10), 2611–2618 (1999)Google Scholar
  20. 20.
    S. Haro-Rodríguez, R.E. Goytia-Reyes, D.K. Dwivedi, V.H. Baltazar-Hernández, H. Flores-Zúñiga, M.J. Pérez-López, Mater. Des. 32(4), 1865–1871 (2011)Google Scholar
  21. 21.
    D. Kevorkov, M. Medraj, M. Aljarrah, J. Li, E. Essadiqi, P. Chartrand, C. Fuerst, J. Metall. 2014, 1–6 (2014)Google Scholar
  22. 22.
    X. Cao, J. Campbell, Mater. Trans. 47(5), 1303–1312 (2006)Google Scholar
  23. 23.
    W. Khalifa, F.H. Samuel, J.E. Gruzleski, Metall. Mater. Trans. A 34(13), 807–825 (2003)Google Scholar
  24. 24.
    B. Markoli, S. Spaič, F. Zupanič, Aluminium 80, 84–88 (2004)Google Scholar
  25. 25.
    S. Kores, M. Vončina, B. Kosec, J. Medved, Metalurgija 51(2), 216–220 (2012)Google Scholar
  26. 26.
    E. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Int. Cast. Met. J. 27(2), 107–114 (2014)Google Scholar
  27. 27.
    Y.L. Liu, S.B. Kang, H.W. Kim, Mater. Lett. 41(6), 267–272 (1999)Google Scholar
  28. 28.
    W. Jiang, X. Xu, Y. Zhao, Z. Wang, C. Wu, D. Pan, Z. Meng, Mater. Sci. Eng. A-Struct. 721, 263–273 (2018)Google Scholar
  29. 29.
    M. Tahta, M. Emamy, X. Cao, J. Campbell, in Materials Science Research Trends, ed. by L. V. Olivante (Nova Science Publishers, Inc, New York, 2008), p. 251Google Scholar
  30. 30.
    P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, T. Shibata, Acta Mater. 65, 185–193 (2014)Google Scholar
  31. 31.
    ASM International Handbook Committee, Alloy Phase Diagrams (ASM International, Materials Park, 2018)Google Scholar
  32. 32.
    C. Xu, F. Wang, H. Mudassar, C. Wang, S. Hanada, W. Xiao, C. Ma, J. Mater. Eng. Perform. 26(4), 1605–1613 (2017)Google Scholar
  33. 33.
    H. Liao, Y. Sun, G. Sun, Mater. Sci. Eng. A-Struct. 335(1–2), 62–66 (2002)Google Scholar
  34. 34.
    J. Campbell, M. Tiryakioğlu, Mater. Sci. Technol. 26(3), 262–268 (2010)Google Scholar
  35. 35.
    K. Nogita, S.D. McDonald, A.K. Dahle, Mater. Trans. 44(4), 692–695 (2003)Google Scholar
  36. 36.
    L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, J. Mater. Sci. 39(1), 215–224 (2004)Google Scholar
  37. 37.
    A. Kósa, Z. Gácsi, J. Dúl, Mater. Sci. Eng. 37(2), 43–50 (2012)Google Scholar
  38. 38.
    E. Tan, B. Ögel, Turkish J. Eng. Env. Sci. 31(1), 53–60 (2007)Google Scholar
  39. 39.
    Y. Kaygısız, Dicle Üniversitesi Mühendislik Dergisi 8(4), 723–731 (2017)Google Scholar
  40. 40.
    M. Alipour, M. Azarbarmas, F. Heydari, M. Hoghoughi, M. Alidoost, M. Emamy, Mater. Des. 38, 64–73 (2012)Google Scholar
  41. 41.
    T. Savaşkan, A.P. Hekimoğlu, Mater. Sci. Eng. A-Struct. 603, 52–57 (2014)Google Scholar
  42. 42.
    S.G. Shabestari, Mater. Sci. Eng. A-Struct. 383(2), 289–298 (2004)Google Scholar
  43. 43.
    K.A. Abuhasel, M.F. Ibrahim, E.M. Elgallad, F.H. Samuel, Mater. Des. 91, 388–397 (2016)Google Scholar
  44. 44.
    Z. Wu, W.A. Curtin, Nature 526(7571), 62–67 (2015)Google Scholar
  45. 45.
    G.H. Zhang, J.X. Zhang, B.C. Li, W. Cai, Prog. Nat. Sci. Mater. 21, 380–385 (2011)Google Scholar
  46. 46.
    C.H. Caceres, J.R. Griffiths, Acta Mater. 44(1), 25–33 (1996)Google Scholar
  47. 47.
    M.G. Mueller, M. Fornabaio, G. Zagar, A. Mortensen, Acta Mater. 105, 165–175 (2016)Google Scholar
  48. 48.
    C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Mater. Sci. Eng. A-Struct. 417(1–2), 275–280 (2006)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentRecep Tayyip Erdogan UniversityRizeTurkey

Personalised recommendations