Advertisement

Effects of the Surface Contact on the Uncertainty in Indentation Yield Strength: Surface Roughness and Angular Misalignment

  • Oh Min Kwon
  • Jongho Won
  • Jong-hyoung Kim
  • Changhyun Cho
  • Eun-chae JeonEmail author
  • Dongil Kwon
Article
  • 11 Downloads

Abstract

We suggest a method for accurately estimating the uncertainty of indentation yield strength determined from the modified Meyer relation as a mathematical function of the measurement, taking into account Type A and Type B uncertainty. Using this method, we quantitatively compared the expanded uncertainty level of the yield strength as measured by instrumented indentation testing (IIT) and uniaxial tensile testing, and propose a dominant measurand that affects the final expanded uncertainty of the indentation yield strength. To interpret the difference in uncertainty between IIT and uniaxial tensile testing, we investigated the effect of the major sources of uncertainty in the IIT system: sample surface roughness and angular misalignment between the surface normal of the sample and the symmetric axis of the indenter. The surface roughness was controlled using 400-, 1000- and 2000-grit paper and the misalignment angle ranged over 0°, 1° and 2°. Acceptable surface roughness and standard uncertainty of misalignment angle are proposed that give the IIT similar uncertainty to uniaxial tensile testing.

Graphic Abstract

Keywords

Indentation Yield strength Metals Uncertainty Spherical indenter 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A3A01054545) and the Ministry of Science and ICT (No. NRF-2015R1A5A1037627).

References

  1. 1.
    M.F. Doerner, W.D. Nix, J. Mater. Res. 1, 601 (1986)CrossRefGoogle Scholar
  2. 2.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  3. 3.
    A. Kruk, A.M. Wusatowska-Sarnek, M. Ziętara, K. Jemielniak, Z. Siemiątkowski, A. Czyrska-Filemonowicz, Met. Mater. Int. 24, 1036 (2018)CrossRefGoogle Scholar
  4. 4.
    S.H. Kim, M.K. Baik, D. Kwon, J. Eng. Mater. Technol. 127, 265 (2005)CrossRefGoogle Scholar
  5. 5.
    S.K. Kang, Y.C. Kim, K.H. Kim, J.Y. Kim, D. Kwon, Int. J. Plast. 49, 1 (2013)CrossRefGoogle Scholar
  6. 6.
    T.H. Pham, S.E. Kim, J. Mater. Sci. Eng. A. 688, 352 (2017)CrossRefGoogle Scholar
  7. 7.
    ASTM E8/E8M-16a, Standard Test Method for Tension Testing of Metallic Materials (American Standard for Testing of Materials, Philadelphia, 2016)Google Scholar
  8. 8.
    D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, 1951), pp. 19–94Google Scholar
  9. 9.
    J.H. Ahn, D. Kwon, J. Mater. Res. 16, 3170 (2001)CrossRefGoogle Scholar
  10. 10.
    E. Meyer, Phys. Z. 9, 66 (1908)Google Scholar
  11. 11.
    ISO/IEC GUIDE 98-3, Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, 2008)Google Scholar
  12. 12.
    E.C. Jeon, J.S. Park, D.S. Choi, K.H. Kim, D. Kwon, J. Eng. Mater. Technol. 131, 6 (2009)CrossRefGoogle Scholar
  13. 13.
    ISO/FDIS 14577-1, Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test method (International Organization for Standardization, Geneva, 2002)Google Scholar
  14. 14.
    R.A. George, S. Dinda, A.S. Kasper, Met. Prog. 109, 30 (1976)Google Scholar
  15. 15.
    T.M. Adams, A2LA Guide for the estimation of measurement uncertainty in testing, Chap. 3 (The American Association for Laboratory Accreditation, Frederick, 2002)Google Scholar
  16. 16.
    C.J. Chieh, Linear regression: making sense of a six sigma tool (2008). https://www.isixsigma.com/tools-templates/regression/linear-regression-making-sense-six-sigma-tool/. Accessed 8 Jan 2019
  17. 17.
    R. Kessel, R. Kacker, M. Berglund, Metrologia 43, S189 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Adamczak, J. Bochnia, B. Kaczmarska, Metrol. Maeas. Syst. 21, 553 (2014)CrossRefGoogle Scholar
  19. 19.
    ASTM E2546-15, Standard Practice for Instrumented Indentation Testing (American Society for Testing and Materials, West Conshohocken, 2015)Google Scholar
  20. 20.
    G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book Company, London, 1988), pp. 332–334Google Scholar
  21. 21.
    Y. Xia, Ph.D. Thesis, Université de Technologie de Compiègne, 2014Google Scholar
  22. 22.
    N.B. Shahjahan, Z. Hu, J. Mater. Res. 32, 1456 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Oh Min Kwon
    • 1
  • Jongho Won
    • 1
    • 2
  • Jong-hyoung Kim
    • 1
  • Changhyun Cho
    • 1
  • Eun-chae Jeon
    • 3
    Email author
  • Dongil Kwon
    • 1
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Centre for Advanced Innovation Technologies (CPIT)VSB-Technical University of OstravaOstravaCzech Republic
  3. 3.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations