Comparison of the Crystallization Behavior of Silica Between Mg- and Al-Phosphate Used in Tension Coatings of Grain-Oriented Electrical Steel

  • Hyung-Ki Park
  • Min-Soo Han
  • Chang-Hwan Chang
  • Jong-Tae Park
  • Chang-Soo Park
  • Hyung-Don JooEmail author


The effect of the phosphate component on the thermal stability of tension coatings was investigated with a focus on the crystallization behavior of amorphous silica in the tension coating. After stress-relief annealing, core loss of samples coated with a Mg-phosphate was improved, while that coated with an Al-phosphate was deteriorated. The domain wall spacing of the samples coated with Mg- and Al-phosphates was respectively increased and decreased after stress relief annealing. This means that the stress relief annealing did not much diminish the tensile stress for Mg-phosphate coating but much diminished the tensile stress for Al-phosphate coating. Based on FTIR and XRD results, we found that the crystallization temperature of silica with Al-phosphate was lower than that of silica with Mg-phosphate. The crystallization of silica was accompanied by an abrupt volume change, which formed cracks in the tension coating and deteriorated the tensile stress.


Grain-oriented electrical steel Tension coating Silica Crystallization Phosphate 



The authors gratefully acknowledge POSCO Technical Research Laboratories for financially and technically supporting this research.


  1. 1.
    K. Foster, M.F. Littmann, Factors affecting core losses in oriented electrical steels at moderate inductions. J. Appl. Phys. 57, 4203–4208 (1985)CrossRefGoogle Scholar
  2. 2.
    H. Honda, S. Kaya, On magnetization of single crystals of iron. Sci. Rep. Tohoku Imp. Univ. 15, 721–727 (1926)Google Scholar
  3. 3.
    S.D. Washko, T.H. Shen, W.G. Morris, The effect of forsterite coatings on magnetic properties and domain structure of grain oriented 3% Si–Fe. J. Appl. Phys. 53, 8296–8298 (1982)CrossRefGoogle Scholar
  4. 4.
    K.C. Lin, E.E. Zook, A desirable material for transformer cores. J. Mater. Eng. 11, 117–121 (1989)CrossRefGoogle Scholar
  5. 5.
    H. Shimanaka, T. Ichida, S. Kobayashi, T. Funahashi, Effect of several stress inducing coatings on magnetostriction property of a high induction 3% silicon steel. IEEE Trans. Mag. 15, 1595–1597 (1979)CrossRefGoogle Scholar
  6. 6.
    P.J. Banks, E. Rawlinson, Dynamic magnetostriction and mechanical strain in oriented 3% silicon-iron sheet subject to combined longitudinal and transverse stresses. IEE Proc. 114, 1537–1546 (1967)Google Scholar
  7. 7.
    T. Yamamoto, T. Nozawa, Effects of tensile stress on total loss of single crystals of 3% silicon-iron. J. Appl. Phys. 41, 2981–2984 (1970)CrossRefGoogle Scholar
  8. 8.
    B. Fukuda, K. Satoh, T. Ichida, Y. Itoh, H. Shimanaka, Effects of surface coatings on domain structure in grain oriented 3% Si-Fe. IEEE Trans. Mag. 17, 2878–2880 (1981)CrossRefGoogle Scholar
  9. 9.
    K.J. Overshott, G. Foot, The effect of tensile stress on the power loss of 3% grain-oriented silicon-iron. IEEE Trans. Mag. 18, 1496–1498 (1982)CrossRefGoogle Scholar
  10. 10.
    G. Bertotti, F. Fiorillo, G.P. Soardo, The prediction of power losses in soft magnetic materials. J. Phys. Colloques 49, 1915–1919 (1988)CrossRefGoogle Scholar
  11. 11.
    R.H. Pry, C.P. Bean, Calculation of the energy loss in magnetic sheet materials using a domain model. J. Appl. Phys. 29, 532–533 (1958)CrossRefGoogle Scholar
  12. 12.
    L.S. Karenina, G.S. Korzunin, R.B. Puzhevich, Effect of the phosphate component of electrical insulating coating on the magnetic losses in grain-oriented electrical steel. Phys. Met. Metallogr. 111, 21–24 (2011)CrossRefGoogle Scholar
  13. 13.
    O. Tanaka, H. Kobayashi, E. Minematsu, New insulating coating for grain oriented electrical steel. J. Mater. Eng. 13, 161–168 (1991)CrossRefGoogle Scholar
  14. 14.
    F.J.G. Landgraf, M. Emura, Losses and permeability improvement by stress relieving fully processed electrical steels with previous small deformations. J. Mag. Mag. Mater. 242–245, 152–156 (2002)CrossRefGoogle Scholar
  15. 15.
    Z. Godec, Influence of slitting on core losses and magnetization curve of grain-oriented electrical steels. IEEE Trans. Mag. 13, 1053–1057 (1977)CrossRefGoogle Scholar
  16. 16.
    S.V. Ponnaluri, R. Cherukuri, P.A. Molian, Core loss reduction in grain-oriented silicon steels by excimer laser scribing: Part I: experimental work. J. Mater. Proc. Technol. 112, 199–204 (2001)CrossRefGoogle Scholar
  17. 17.
    D. Poultney, D. Snell, Use of the Fourier transform infrared (FTIR) technique for determination of the composition of final phosphte coatings on grain-oriented electrical steel. J. Mag. Mag. Mater. 320, e649–e652 (2008)CrossRefGoogle Scholar
  18. 18.
    A.C. Adams, Plasma deposition of inorganic films. Solid State Technol. 26, 135–139 (1983)Google Scholar
  19. 19.
    I.W. Boyd, J.I.B. Wilson, A study of thin silicon dioxide films using infrared absorption techniques. J. Appl. Phys. 53, 4166–4172 (1982)CrossRefGoogle Scholar
  20. 20.
    A. Hajimohammadi, J.L. Provis, J.S.J.V. Deventer, The effect of silica availability on the mechanism of geopolymerisation. Cem. Concr. Res. 41, 210–216 (2011)CrossRefGoogle Scholar
  21. 21.
    R.C. Breneman, J.W. Halloran, Kinetics of cristobalite formation in sintered silica. J. Am. Ceram. Soc. 97, 2272–2278 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Chakrabarty, K. Chatterjee, Synthesis and optical manifestation of NiO-silica nanocomposite. ISRN Nanotechnol. 2011, 1–6 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Franzel, C. Wingfield, M.F. Bertino, S. Mahadik-Khanolkar, N. Leventis, Regioselective cross-linking of silica aerogels with magnesium silicate ceramics. J. Mater. Chem. A 1, 6021–6029 (2013)CrossRefGoogle Scholar
  24. 24.
    M.G. Garnica-Romo, J. Gonzalez-Hernandez, M.A. Hernandez-Landaverde, Y.V. Vorobiev, F. Ruiz, J.R. Martinez, Structure of heat-treated sol-gel SiO2 glasses containing silver. J. Mater. Res. 16, 2007–2012 (2001)CrossRefGoogle Scholar
  25. 25.
    Y. Kanno, Discussion from the necleation for the crystallization temperature of vitreous silica. J. Mater. Sci. Lett. 9, 451–453 (1990)CrossRefGoogle Scholar
  26. 26.
    C. Real, D. Alcalá, J.M. Criado, Preparation of silica from rice husks. J. Am. Ceram. Soc. 79, 2012–2016 (2005)CrossRefGoogle Scholar
  27. 27.
    N. Perkas, V.G. Pol, S.V. Pol, A. Gedanken, Gold-induced crystallization of SiO2 and TiO2 powders. Cryst. Growth Des. 6, 293–296 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Hyung-Ki Park
    • 1
  • Min-Soo Han
    • 2
  • Chang-Hwan Chang
    • 3
  • Jong-Tae Park
    • 2
  • Chang-Soo Park
    • 2
  • Hyung-Don Joo
    • 2
    Email author
  1. 1.Gangwon Regional DivisionKorea Institute of Industrial TechnologyGangneungRepublic of Korea
  2. 2.POSCO Technical Research LaboratoriesPOSCOPohangRepublic of Korea
  3. 3.Analysis & Assessment GroupResearch Institute of Industrial Science & TechnologyPohangRepublic of Korea

Personalised recommendations