Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Synergetic Effect of Discontinuous Carbon Fibers and Graphite Flakes on Thermo-Mechanical Properties of Aluminum Matrix Composites Fabricated by Solid–Liquid Phase Sintering

  • 49 Accesses

Abstract

Aluminum (Al) matrix composite materials reinforced with graphite flakes (GF) and pitch-based carbon fibers (CF) were fabricated by solid–liquid phase sintering with a small amount of Aluminum–Silicon eutectic alloy (Al-12 wt%Si). The amount of Al–Si is optimized for a carbon content of 50 vol% in order to achieve, in the plane of GF reinforcement, a higher thermal conductivity (TC) and a lower coefficient of thermal expansion (CTE) compared to identical composite material fabricated by conventional powder metallurgy route. Al/(GF + CF) composite materials were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microscopy and X-ray tomography in order to highlight the distribution of the Al–Si liquid phase and the formation of a carbon network in the aluminum matrix. A small amount of CF allows to control the through-plane CTE without affecting significantly the in-plane TC of the Al-C composites. The (GF + CF) mixture and the solid–liquid phase sintering allow to achieve a TC of 410 W/m K (in-plane direction) and a CTE of 2.4 × 10−6/K (trough-plane direction), which is, for example, applicable for lightweight heat sink material.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    C. Zweben, JOM 50(6), 47–51 (1998)

  2. 2.

    C. Zweben: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 168–174 (2005)

  3. 3.

    E. Rohatgi, K. Pradeep, Def. Sci. J. 43(4), 323–349 (1993)

  4. 4.

    S. Mallik, N. Ekere, C. Best, R. Bhatti, Appl. Therm. Eng. 31(2-3), 355–362 (2011)

  5. 5.

    K. Yoshida, H. Morigami, Microelectron. Reliab. 44(2), 303–308 (2004)

  6. 6.

    P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Compos. Sci. Technol. 66(15), 2677–2685 (2006)

  7. 7.

    O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier, S. Kleiner, Diam. Relat. Mater. 15(9), 1250–1260 (2006)

  8. 8.

    H. Kurita, E. Feuillet, T. Guillemet, J.-M. Heintz, A. Kawasaki, J.-F. Silvain, Acta Metall. Sin. 27(4), 714–722 (2014)

  9. 9.

    H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications Park Ridge (New Jersey, USA), 194-195 (1993)

  10. 10.

    J.K. Chen, I.S. Huang, Compos. B Eng. 44(1), 698–703 (2013)

  11. 11.

    M. Murakami, N. Nishiki, K. Nakamura, J. Ehara, H. Okada, T. Kouzaki, K. Watanabe, S. Yoshimura, Carbon 30(2), 255–262 (1992)

  12. 12.

    P.G. Klemens, D.F. Pedraza, Carbon 32(4), 735–741 (1994)

  13. 13.

    Q. Fu, J. Yang, Y. Chen, D. Li, D. Xu, Appl. Phys. Lett. 106 (3), art. no. 031905 (2015)

  14. 14.

    Y. Huang, Y. Su, S. Li, Q. Ouyang, G. Zhang, L. Zhang, D. Zhang, Compos. B Eng. 107, 43–50 (2016)

  15. 15.

    L. Weber, R. Tavangar, Scripta Mater. 57(11), 988–991 (2007)

  16. 16.

    C. Azina, J. Roger, A. Joulain, V. Mauchamp, B. Mortaigne, Y.F. Lu, J.-F. Silvain, J. Alloy. Compd. 738, 292–300 (2018)

  17. 17.

    J.M. Molina, E. Louis, Mater. Charact. 109, 107–115 (2015)

  18. 18.

    C. Zhou, W. Huang, Z. Chen, G. Ji, M.L. Wang, D. Chen, H.W. Wang, Compos. B Eng. 70, 256–262 (2015)

  19. 19.

    N. Chamroune, D. Mereib, F. Delange, N. Caillault, Y. Lu, J.-L. Grosseau-Poussard, J.-F. Silvain, J. Mater. Sci. 53(11), 8180–8192 (2018)

  20. 20.

    W. Li, Y. Liu, G. Wu, Carbon 95, 545–551 (2015)

  21. 21.

    R. Prieto, J.M. Molina, J. Narciso, E. Louis, Compos. A Appl. Sci. Manuf. 42(12), 1970–1977 (2011)

  22. 22.

    R. Prieto, J.M. Molina, J. Narciso, E. Louis, Scripta Mater. 59(1), 11–14 (2008)

  23. 23.

    V. Oddone, J. Segl, M. Prakasam, M.T. Hartmann, J.-F. Silvain, C. Edtmaier, S. Reich, J. Mater. Sci. 53(15), 10910–10919 (2018)

  24. 24.

    H. Kurita, T. Miyazaki, A. Kawasaki, Y.F. Lu, J.-F. Silvain, Compos. A Appl. Sci. Manuf. 73, 125–131 (2015)

  25. 25.

    S. Ren, J. Chen, X. He, X. Qu, Carbon 127, 412–423 (2018)

  26. 26.

    I. Firkowska, A. Boden, B. Boerner, S. Reich, Nano Lett. 15(7), 4745–4751 (2015)

  27. 27.

    J. Chen, S. Ren, X. He, X. Qu, Carbon 121, 25–34 (2017)

  28. 28.

    V. Oddone, B. Boerner, S. Reich, Sci. Technol. Adv. Mater. 18(1), 180–186 (2017)

  29. 29.

    C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 1(2), 279–421 (1972)

  30. 30.

    V. Oddone, S. Reich, Phys. Status Solidi. Rapid Res. Lett. 11(6), art. no. e201700090 (2017)

  31. 31.

    R.A. Schapery, J. Compos. Mater. 2(3), 380–404 (1968)

  32. 32.

    G. Korb, J. Korab, G. Groboth, Compos. A Appl. Sci. Manuf. 29(12), 1563–1567 (1998)

  33. 33.

    A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, C. Thomsen, Phys. Rev. B 75(15), 153–408 (2007)

  34. 34.

    V. Favier, R. Dendievel, G. Canova, J.Y. Cavaille, P. Gilormini, Acta Mater. 45(4), 1557–1565 (1997)

  35. 35.

    C. Zhou, G. Ji, Z. Chen, M. Wang, A. Addad, D. Schryvers, H. Wang, Mater. Des. 63, 719–728 (2014)

  36. 36.

    Q. Liu, X.-B. He, S.B. Ren, C. Zhang, L. Ting-Ting, X.H. Qu, J. Alloy. Compd. 587, 255–259 (2014)

Download references

Acknowledgement

The authors thank the University of Bordeaux (2015-FD-24) for financial support.

Author information

Correspondence to Jean-François Silvain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chamroune, N., Delange, F., Caillault, N. et al. Synergetic Effect of Discontinuous Carbon Fibers and Graphite Flakes on Thermo-Mechanical Properties of Aluminum Matrix Composites Fabricated by Solid–Liquid Phase Sintering. Met. Mater. Int. 26, 155–167 (2020). https://doi.org/10.1007/s12540-019-00324-0

Download citation

Keywords

  • Metal-matrix composites (MMCs)
  • Discontinuous reinforcement
  • Powder processing
  • Thermal properties