Skip to main content
Log in

Droplet Spreading and Wettability of Abrasive Processed Aluminum Alloy Surfaces

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

One of the main cause of a droplet metastable state is found to be surface roughness. This state is characterized by a large contact angle hysteresis and condition when the static contact angle is larger than the advancing dynamic contact angle. Besides the texture, other factors can influence the deviation from the equilibrium state, in particular, the fluid flow rate (the growth rate of a droplet) affecting the contact line speed. An experimental study was done to determine the effect of roughness and fluid flow rate on wetting of aluminum-magnesium alloy surfaces with random roughness processed by abrasive polishing. Three-dimensional roughness parameters were used to evaluate their texture. The correlations between these parameters, static, advancing and receding dynamic contact angles, hysteresis, and contact line speed were obtained. The molecular-kinetic theory of wetting was used to interpret the dynamic contact angle data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010)

    CAS  Google Scholar 

  2. A.A. Darhuber, S.M. Troian, Annu. Rev. Fluid Mech. 37, 425 (2005)

    Google Scholar 

  3. D. Anton, Surface-fluorinated coatings. Adv. Mater. 10(15), 1197 (1998)

    CAS  Google Scholar 

  4. A. Borruto, G. Crivellone, F. Marani, Wear 222(1), 57 (1998)

    CAS  Google Scholar 

  5. T. Young, Philos. Trans. R. Soc. Lond. 95, 65 (1805)

    Google Scholar 

  6. E.B.V. Dussan, Annu. Rev. Fluid Mech. 11, 371 (1979)

    Google Scholar 

  7. J.-H. Kim, H.P. Kavehpour, J.P. Rothstein, Phys. Fluids 27, 032107 (2015)

    Google Scholar 

  8. T.D. Blake, J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)

    CAS  Google Scholar 

  9. E. Ruckenstein, C.S. Dunn, J. Colloid Interface Sci. 59, 135 (1977)

    CAS  Google Scholar 

  10. R.G. Cox, J. Fluid Mech. 168, 169 (1986)

    CAS  Google Scholar 

  11. O.V. Voinov, J. Fluid Dyn. 11, 714 (1976)

    Google Scholar 

  12. R.A. Hayes, J. Ralston, J. Colloid Interface Sci. 159, 429 (1993)

    CAS  Google Scholar 

  13. S.-Y. Chen, Y. Kaufman, A.M. Schrader, D. Seo, D.W. Lee, S.H. Page, P.H. Koenig, S. Isaacs, Y. Gizaw, J.N. Israelachvili, Langmuir 33, 10041 (2017)

    CAS  Google Scholar 

  14. J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, A.C.S. Appl, Mater. Interfaces 7, 9858 (2015)

    CAS  Google Scholar 

  15. A.L. Dubov, A. Mourran, M. Möller, O.I. Vinogradova, J. Chem. Phys. 141, 074710 (2014)

    Google Scholar 

  16. S.Y. Misyura, Chem. Eng. Res. Des. 129, 306 (2018)

    CAS  Google Scholar 

  17. S.Y. Misyura, Int. Commun. Heat Mass Transf. 96, 7 (2018)

    CAS  Google Scholar 

  18. K.J. Kubiak, M.C. Wilson, T.G. Mathia, S. Carras, Scanning 33, 370 (2011)

    CAS  Google Scholar 

  19. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, Ph Carval, Wear 271, 523 (2011)

    CAS  Google Scholar 

  20. ISO 25178-2:2012. Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters

  21. V. Hejazi, A.D. Moghadam, P. Rohatgi, M. Nosonovsky, Langmuir 30, 9423 (2014)

    CAS  Google Scholar 

  22. H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, Surf. Coat. Tech. 292, 72 (2016)

    CAS  Google Scholar 

  23. E.A. Papp, C. Csiha, Surf. Interfaces 8, 54 (2017)

    CAS  Google Scholar 

  24. R.N. Wenzel, J. Phys. Chem. 53, 1466 (1949)

    CAS  Google Scholar 

  25. A.B.D. Cassie, S. Baxter, Nature 155, 21 (1945)

    CAS  Google Scholar 

  26. B. Zahiri, P.K. Sow, C.H. Kung, W. Mérida, J. Colloid Interface Sci. 501, 34 (2017)

    CAS  Google Scholar 

  27. S. Giljean, M. Bigerelle, K. Anselme, H. Haidara, Appl. Surf. Sci. 257(22), 9631 (2011)

    CAS  Google Scholar 

  28. E.G. Orlova, D.V. Feoktistov, G.V. Kuznetsov, K.O. Ponomarev, Eur. J. Mech. B Fluids 68, 118 (2018)

    Google Scholar 

  29. G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, K. Batishcheva, S.S. Ilenok, Appl. Surf. Sci. 469, 974 (2019)

    CAS  Google Scholar 

  30. D.V. Zaitsev, D.P. Kirichenko, V.S. Ajaev, O.A. Kabov, Phys. Rev. Lett. 119, 094503 (2017)

    Google Scholar 

  31. A. Bateni, S.S. Susnar, A. Amirfazli, A.W. Neumann, Colloids Surf. A Physicochem. Eng. Asp. 219, 215 (2003)

    CAS  Google Scholar 

  32. F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid (Cambridge Univ. Press, London, 1883), p. 162

    Google Scholar 

  33. A.D. Modestov, K.A. Emelyanenko, A.M. Emelyanenko, A.G. Domantovsky, L.B. Boinovich, Russ. Chem. Bull. 65, 2607 (2016)

    CAS  Google Scholar 

  34. P.G. de Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  35. B.V. Derjaguin, Dokl. Akas. Nauk SSSR 51, 357 (1946)

    Google Scholar 

  36. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936)

    CAS  Google Scholar 

  37. M. Kanungo, S. Mettu, K.-Y. Law, S. Daniel, Langmuir 30, 7358 (2014)

    CAS  Google Scholar 

  38. R.E. Johnson, R.H. Dettre, in Wettability, ed. by J.C. Berg (Marcel Dekker, New York, 1993), pp. 2–71

  39. A. Mohammad Karim, J.P. Rothstein, H.P. Kavehpour, J. Colloid Interface Sci. 513, 658 (2018)

    CAS  Google Scholar 

  40. R. Sedev, Adv. Colloid Interface Sci. 222, 661 (2015)

    CAS  Google Scholar 

  41. T.D. Blake, in Wettability, ed. by J.C. Berg (Marcel Dekker, New York, 1993), pp. 251–309

  42. S.R. Ranabothu, C. Karnezis, L.L. Dai, J. Colloid Interface Sci. 288, 213 (2005)

    CAS  Google Scholar 

  43. R. Fetzer, J. Ralston, J. Phys. Chem. C 113, 8888 (2009)

    CAS  Google Scholar 

  44. R.A. Hayes, J. Ralston, Langmuir 10, 340 (1994)

    CAS  Google Scholar 

  45. R.L. Hoffman, J. Colloid Interface Sci. 50, 228 (1975)

    CAS  Google Scholar 

  46. L.B. Boinovich, E.B. Modin, A.R. Sayfutdinova, K.A. Emelyanenko, A.L. Vasiliev, A.M. Emelyanenko, ACS Nano 11(10), 10113 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, Research Project No. 18-38-00315 mol_a. The optical shadow system was elaborated at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Orlova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Orlova, E.G., Feoktistov, D.V. et al. Droplet Spreading and Wettability of Abrasive Processed Aluminum Alloy Surfaces. Met. Mater. Int. 26, 46–55 (2020). https://doi.org/10.1007/s12540-019-00310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00310-6

Keywords

Navigation