Metals and Materials International

, Volume 25, Issue 5, pp 1388–1393 | Cite as

Low-Temperature Sintering Characteristics of Ag-Based Complex Inks Using Transient Melting and Joining of Sn–58Bi Nanoparticles

  • Woo Lim Choi
  • Jong-Hyun LeeEmail author


A novel complex ink was fabricated by mixing Sn–58Bi nanoparticles with a commercial conductive ink containing Ag nanoparticles and then sintered rapidly for 110 s at 140 °C in air using a conveyor-type reflow furnace. Sn–58Bi nanoparticles smaller than 15 nm wetted on the neighboring Ag nanoparticles immediately after melting at temperatures lower than their melting point, and hence, acted as transient liquid-phase binders. The composite film sintered with 4 wt% Sn–58Bi exhibited stability and a low electrical resistivity of 4.46 μΩ cm, and hence, was found to be compatible with low-cost flexible films.

Graphical Abstract


Sintering Electrical resistivity Thin films Nanostructure Complex ink 



  1. 1.
    A. Kosmala, R. Wright, Q. Zhang, P. Kirby, Mater. Chem. Phys. 129, 1075 (2011)CrossRefGoogle Scholar
  2. 2.
    T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Adv. Mater. 20, 343 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, E.J.W. List, Adv. Funct. Mater. 17, 3111 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Murata, J. Matsumoto, A. Tezuka, Y. Matsuba, H. Yokoyama, Microsyst. Technol. 12, 2 (2005)CrossRefGoogle Scholar
  6. 6.
    K. Cheng, M.H. Yang, W.W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Macromol. Rapid Commun. 26, 247 (2005)CrossRefGoogle Scholar
  7. 7.
    D. Kang, E. Lee, H. Kim, Y.M. Choi, S. Lee, I. Kim, D. Yoon, J. Jo, B. Kim, T.M. Lee, J. Appl. Phys. 115, 234908 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Merilampi, T. LaineMa, P. Ruuskanen, Microelectron. Reliab. 49, 782 (2009)CrossRefGoogle Scholar
  9. 9.
    S.B. Walker, J.A. Lewis, J. Am. Chem. Soc. 134, 1419 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Perelaer, M. Klokkenburg, C.E. Hendriks, U.S. Schubert, Adv. Mater. 21, 4830 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Perelaer, A.W.M. de Laat, C.E. Hendriks, U.S. Schubert, J. Mater. Chem. 18, 3209 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943 (2010)CrossRefGoogle Scholar
  13. 13.
    C.I. Yeo, J.H. Kwon, S.J. Jang, Y.T. Lee, Opt. Express 20, 19554 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Lehtimaki, M. Li, J. Salomaa, J. Porhonen, A. Kalanti, S. Tuukkanen, P. Heljo, K. Halonen, D. Lupo, Int. J. Electr. Power Energy Syst. 58, 42 (2014)CrossRefGoogle Scholar
  15. 15.
    T.G. Lei, J.N. Calata, G.-Q. Lu, X. Chen, S. Luo, I.E.E.E. Trans, Compon. Packag. Technol. 33, 98 (2010)CrossRefGoogle Scholar
  16. 16.
    K.S. Siow, J. Alloys Compd. 154, 6 (2012)CrossRefGoogle Scholar
  17. 17.
    Y.M. Shin, H.J. Kim, S.P. Jang, J.H. Lee, J. Electron. Mater. 43, 3372 (2014)CrossRefGoogle Scholar
  18. 18.
    W.D. Kingery, J. Appl. Phys. 30, 301 (1959)CrossRefGoogle Scholar
  19. 19.
    F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, G. Ennas, J. Alloys Compd. 623, 7 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Gao, C. Zou, B. Yang, Q. Zhal, J. Liu, E. Zhuravlev, C. Schick, J Alloys Compd. 484, 777 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Zhao, Y. Gao, W. Zhang, T. Song, Q. Zhai, J. Mater. Sci.: Mater. Electron. 23, 2221 (2012)Google Scholar
  22. 22.
    A.G. Tefera, M.D. Mochena, E. Johnson, J. Dickerson, J. Appl. Phys. 116, 104301 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulRepublic of Korea

Personalised recommendations