Advertisement

Metals and Materials International

, Volume 25, Issue 6, pp 1548–1563 | Cite as

Enhancement in Viscoplastic Self-Consistent FLD Prediction Model and Its Application for Austenitic and Ferritic Stainless Steels

  • Youngung JeongEmail author
  • Timo Manninen
Article
  • 145 Downloads

Abstract

The computational algorithm of a crystal-plastic-based FLD predictive model (VPSC-FLD) developed in Jeong et al. (Model Simul Mater Sci Eng, 2016.  https://doi.org/10.1088/0965-0393/24/5/055005) is enhanced. A real-time monitor process runs while the forming limit diagram is calculated by parallel computation on various strain loading paths. The monitor process enables the CPU workers to communicate with each other so that the unnecessary model runs can be determined and terminated on the fly. Moreover, the advanced numerical algorithm suggested earlier by Schwindt et al. (Int J Plast 73:62–99, 2015.  https://doi.org/10.1016/j.ijplas.2015.01.005) is implemented to VPSC-FLD. The new numerical algorithm and real-time monitor has improved both the overall computational speed and the efficiency in parallel computation. The enhanced VPSC-FLD model is applied for austenitic and ferritic stainless samples in terms of flow stress–strain curve, R-values, and forming limit diagram. The linearization scheme applied on the local constitutive description is studied to reveal its impacts on various macroscopic properties. It is found that the linearization scheme with the best fit on uniaxial data is not necessary the one that gives the best predictive accuracy on the forming limit prediction.

Keywords

Crystal plasticity Formability Anisotropy Parallel computation 

Notes

Acknowledgements

The support from National Research Foundation of Korea (NRF-2017R1D1A1B03031052) is kindly acknowledged.

References

  1. 1.
    S. Keeler, W. Backhofen, Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans. Q. 56, 25–48 (1964)Google Scholar
  2. 2.
    F. Abu-Farha, L.G. Hector, M. Khraisheh, Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61, 48–56 (2009).  https://doi.org/10.1007/s11837-009-0121-8 CrossRefGoogle Scholar
  3. 3.
    Y. Hanabusa, H. Takizawa, T. Kuwabara, Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213, 961–970 (2013).  https://doi.org/10.1016/j.jmatprotec.2012.12.007 CrossRefGoogle Scholar
  4. 4.
    J. Li, J.E. Carsley, T.B. Stoughton, L.G. Hector, S.J. Hu, Forming limit analysis for two-stage forming of 5182-O aluminum sheet with intermediate annealing. Int. J. Plast. 45, 21–43 (2013).  https://doi.org/10.1016/j.ijplas.2012.10.004 CrossRefGoogle Scholar
  5. 5.
    A.F. Graf, W.F. Hosford, Calculations of forming limit diagrams for changing strain paths ALEJANDRO. Metall. Trans. A 24, 2497–2501 (1993).  https://doi.org/10.1007/BF02646528 CrossRefGoogle Scholar
  6. 6.
    T.B. Stoughton, General forming limit criterion for sheet metal forming. Int. J. Mech. Sci. 42, 1–27 (2000).  https://doi.org/10.1016/S0020-7403(98)00113-1 CrossRefGoogle Scholar
  7. 7.
    K. Yoshida, T. Kuwabara, M. Kuroda, Path-dependence of the forming limit stresses in a sheet metal. Int. J. Plast. 23, 361–384 (2007).  https://doi.org/10.1016/j.ijplas.2006.05.005 CrossRefGoogle Scholar
  8. 8.
    Z. Marciniak, K. Kuczyński, T. Pokora, Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci. 15, 789–800 (1973).  https://doi.org/10.1016/0020-7403(73)90068-4 CrossRefGoogle Scholar
  9. 9.
    Y. Jeong, M.S. Pham, M. Iadicola, A. Creuziger, T. Foecke, Forming limit prediction using a self-consistent crystal plasticity framework: a case study for body-centered cubic materials. Model. Simul. Mater. Sci. Eng. (2016).  https://doi.org/10.1088/0965-0393/24/5/055005 CrossRefGoogle Scholar
  10. 10.
    C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout, J.W. Signorelli, Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: an efficient and robust implementation of the M-K model. Int. J. Plast 73, 62–99 (2015).  https://doi.org/10.1016/j.ijplas.2015.01.005 CrossRefGoogle Scholar
  11. 11.
    F. Barlat, O. Richmond, Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Mater. Sci. Eng. 95, 15–29 (1987).  https://doi.org/10.1016/0025-5416(87)90494-0 CrossRefGoogle Scholar
  12. 12.
    K. Inal, K.W. Neale, A. Aboutajeddine, Forming limit comparisons for FCC and BCC sheets. Int. J. Plast. 21, 1255–1266 (2005).  https://doi.org/10.1016/j.ijplas.2004.08.001 CrossRefGoogle Scholar
  13. 13.
    C. John Neil, S.R. Agnew, Crystal plasticity-based forming limit prediction for non-cubic metals: application to Mg alloy AZ31B. Int. J. Plast. 25, 379–398 (2009).  https://doi.org/10.1016/j.ijplas.2008.05.003 CrossRefGoogle Scholar
  14. 14.
    J.S. Nagra, A. Brahme, R.K. Mishra, R.A. Lebensohn, K. Inal, An efficient full-field crystal plasticity-based M-K framework to study the effect of 3D microstructural features on the formability of polycrystalline materials. Model. Simul. Mater. Sci. Eng. (2018).  https://doi.org/10.1088/1361-651X/aadc20 CrossRefGoogle Scholar
  15. 15.
    J.W. Signorelli, M.A. Bertinetti, P.A. Turner, Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model. Int. J. Plast. 25, 1–25 (2009).  https://doi.org/10.1016/j.ijplas.2008.01.005 CrossRefGoogle Scholar
  16. 16.
    H. Wang, P.D. Wu, K.P. Boyle, K.W. Neale, On crystal plasticity formability analysis for magnesium alloy sheets. Int. J. Solids Struct. 48, 1000–1010 (2011).  https://doi.org/10.1016/j.ijsolstr.2010.12.004 CrossRefGoogle Scholar
  17. 17.
    P.D. Wu, K.W. Neale, E. Van Der Giessen, On crystal plasticity FLD analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1, 2 (1997).  https://doi.org/10.1098/rspa.1997.0099 CrossRefGoogle Scholar
  18. 18.
    K. Yoshida, T. Ishizaka, M. Kuroda, S. Ikawa, The effects of texture on formability of aluminum alloy sheets. Acta Mater. 55, 4499–4506 (2007).  https://doi.org/10.1016/j.actamat.2007.04.014 CrossRefGoogle Scholar
  19. 19.
    K. Chung, H. Kim, C. Lee, Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: deformation path insensitive formula based on theoretical models. Int. J. Plast. 58, 3–34 (2014).  https://doi.org/10.1016/j.ijplas.2014.03.009 CrossRefGoogle Scholar
  20. 20.
    Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu, J. Chen, Prediction of forming limits for anisotropic materials with nonlinear strain paths by an instability approach. Int. J. Plast. 103, 143–167 (2018).  https://doi.org/10.1016/j.ijplas.2018.01.006 CrossRefGoogle Scholar
  21. 21.
    M. Kuroda, V. Tvergaard, Forming limit diagrams for anisotropic metal sheets with different yield criteria. Int. J. Solids Struct. 37, 5037–5059 (2000).  https://doi.org/10.1016/S0020-7683(99)00200-0 CrossRefGoogle Scholar
  22. 22.
    J. Lian, F. Shen, X. Jia, D.C. Ahn, D.C. Chae, S. Münstermann, W. Bleck, An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction. Int. J. Solids Struct. 151, 20–44 (2017).  https://doi.org/10.1016/j.ijsolstr.2017.04.007 CrossRefGoogle Scholar
  23. 23.
    L. Zhang, J. Wang, Modeling the localized necking in anisotropic sheet metals. Int. J. Plast. 39, 103–118 (2012).  https://doi.org/10.1016/j.ijplas.2012.05.005 CrossRefGoogle Scholar
  24. 24.
    J.W. Hutchinson, K.W. Neale, Sheet Necking-II. Time-independent behavior. Mech. Sheet Met. Form. (2011).  https://doi.org/10.1007/978-1-4613-2880-3_6 CrossRefGoogle Scholar
  25. 25.
    J.W. Hutchinson, K.W. Neale, Sheet Necking-III. Strain-rate effects. Mech. Sheet Met. Form. (2011).  https://doi.org/10.1007/978-1-4613-2880-3_11 CrossRefGoogle Scholar
  26. 26.
    A. Gupta, M. Ben Bettaieb, F. Abed-Meraim, S.R. Kalidindi, Computationally efficient predictions of crystal plasticity based forming limit diagrams using a spectral database. Int. J. Plast. 103, 168–187 (2018).  https://doi.org/10.1016/j.ijplas.2018.01.007 CrossRefGoogle Scholar
  27. 27.
    D. Steglich, Y. Jeong, Texture-based forming limit prediction for Mg sheet alloys ZE10 and AZ31. Int. J. Mech. Sci. 117, 102–114 (2016).  https://doi.org/10.1016/j.ijmecsci.2016.08.013 CrossRefGoogle Scholar
  28. 28.
    R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993).  https://doi.org/10.1016/0956-7151(93)90130-K CrossRefGoogle Scholar
  29. 29.
    J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 101–127 (2006).  https://doi.org/10.1098/rspa.1976.0027 CrossRefGoogle Scholar
  30. 30.
    C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32, 1637–1653 (1984).  https://doi.org/10.1016/0001-6160(84)90222-0 CrossRefGoogle Scholar
  31. 31.
    C.N. Tomé, Self-consistent polycrystal models: a directional compliance criterion to describe grain interactions. Model. Simul. Mater. Sci. Eng. 7, 723–738 (1999).  https://doi.org/10.1088/0965-0393/7/5/305 CrossRefGoogle Scholar
  32. 32.
    Y. Jeong, F. Barlat, M.-G. Lee, Application of crystal plasticity to an austenitic stainless steel. Model. Simul. Mater. Sci. Eng. (2012).  https://doi.org/10.1088/0965-0393/20/2/024009 CrossRefGoogle Scholar
  33. 33.
    H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612 (2010).  https://doi.org/10.1016/j.jmps.2010.01.004 CrossRefGoogle Scholar
  34. 34.
    R.A. Lebensohn, C.N. Tomé, P.J. Maudlin, A selfconsistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with voids. J. Mech. Phys. Solids 52, 249–278 (2004).  https://doi.org/10.1016/S0022-5096(03)00114-5 CrossRefGoogle Scholar
  35. 35.
    R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids 48, 1203–1227 (2000).  https://doi.org/10.1016/S0022-5096(99)00071-X CrossRefGoogle Scholar
  36. 36.
    C.N. Tomé, R.A. Lebensohn, Manual for code Visco-Plastic Self-Consistent (VPSC) (2009)Google Scholar
  37. 37.
    O. Engler, C.N. Tomé, M.Y. Huh, A study of through-thickness texture gradients in rolled sheets. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31, 2299–2315 (2000).  https://doi.org/10.1007/s11661-000-0146-7 CrossRefGoogle Scholar
  38. 38.
    M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, D. Raabe, Effect of through-thickness macro and micro-texture gradients on ridging of 17%Cr ferritic stainless steel sheet. Steel Res. Int. (2005).  https://doi.org/10.1002/srin.200506098 CrossRefGoogle Scholar
  39. 39.
    M.P. Miller, T.J. Turner, A methodology for measuring and modeling crystallographic texture gradients in processed alloys. Int. J. Plast. 17, 783–805 (2001).  https://doi.org/10.1016/S0749-6419(00)00068-1 CrossRefGoogle Scholar
  40. 40.
    D. Raabe, Inhomogeneity of the crystallographic texture in a hot-rolled austenitic stainless steel. J. Mater. Sci. 30, 47–52 (1995).  https://doi.org/10.1007/BF00352130 CrossRefGoogle Scholar
  41. 41.
    I. Tikhovskiy, D. Raabe, F. Roters, Simulation of earing of a 17% Cr stainless steel considering texture gradients. Mater. Sci. Eng. A 488, 482–490 (2008).  https://doi.org/10.1016/j.msea.2007.11.063 CrossRefGoogle Scholar
  42. 42.
    F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX—free and open source software toolbox. Solid State Phenom. 160, 63–68 (2010).  https://doi.org/10.4028/www.scientific.net/SSP.160.63 CrossRefGoogle Scholar
  43. 43.
    Y. Jeong, M.S. Pham, M. Iadicola, A. Creuziger, Forming limit diagram predictions using a self-consistent crystal plasticity model: a parametric study. Key Eng. Mater. 651–653, 193–198 (2015).  https://doi.org/10.4028/www.scientific.net/kem.651-653.193 CrossRefGoogle Scholar
  44. 44.
    J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965).  https://doi.org/10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  45. 45.
    E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/
  46. 46.
    T.E. Oliphant, SciPy: open source scientific tools for Python. Comput. Sci. Eng. (2007).  https://doi.org/10.1109/MCSE.2007.58 CrossRefGoogle Scholar
  47. 47.
    C. Du, F. Maresca, M.G.D. Geers, J.P.M. Hoefnagels, Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations. Acta Mater. 146, 314–327 (2018).  https://doi.org/10.1016/j.actamat.2017.12.054 CrossRefGoogle Scholar
  48. 48.
    Y. Jeong, F. Barlat, M.-G. Lee, Crystal plasticity predictions of forward-reverse simple shear flow stress. Mater. Sci. Forum 702–703, 204–207 (2012).  https://doi.org/10.4028/www.scientific.net/MSF.702-703.204 CrossRefGoogle Scholar
  49. 49.
    H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612 (2010).  https://doi.org/10.1016/j.jmps.2010.01.004 CrossRefGoogle Scholar
  50. 50.
    F. Barlat, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mater. Sci. Eng. 91, 55–72 (1987).  https://doi.org/10.1016/0025-5416(87)90283-7 CrossRefGoogle Scholar
  51. 51.
    K. Bandyopadhyay, S. Basak, K.S. Prasad, M.-G. Lee, S.K. Panda, J. Lee, Improved formability prediction by modeling evolution of anisotropy of steel sheets. Int. J. Solids Struct. 156, 263–280 (2018).  https://doi.org/10.1016/j.ijsolstr.2018.08.024 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangwon National UniversityChangwonRepublic of Korea
  2. 2.Outokumpu, Process R&DTornioFinland

Personalised recommendations