Metals and Materials International

, Volume 25, Issue 6, pp 1574–1585 | Cite as

Effect of Rotational Speed on Microstructure and Mechanical Properties of 2060 Aluminum Alloy RFSSW Joint

  • Peng Chai
  • Yue WangEmail author


Refill friction stir spot welding (RFSSW) is used to weld 3.2-mm-thick 2060 aluminum alloy sheets. In this study, we investigated the formation, microstructures and mechanical properties of the RFSSW joint. The results show that increasing the rotational speed is beneficial to eliminating annular groove but increasing the flash. The hook of the joint at each rotational speed is downward bending. The void at the bottom of the sleeve-affected zone (SAZ) and incomplete bonding at the lap interface initially increase and then decrease with the rotational speed increments from 2000 to 2600 rpm. The microstructure distribution at the bottom of the stir zone (SZ) is similar to that at the interface of the SAZ/thermo-mechanically affected zone (TMAZ), including SZ, TMAZ, heat-affected zone, and the base material. The microhardness values of the joint gradually decrease along the sheet thickness at each welding condition. Furthermore, the microhardness at the SAZ/TMAZ interface initially increases to the maximum at 2400 rpm and then decrease to the minimum at 2600 rpm. Moreover, the tensile-shear failure load of the joint initially increases and then decreases with increasing rotational speeds. The fracture positions of tensile-shear specimens are related to microstructure distribution, microhardness, material flow, and welding defects.


Refill friction stir spot welding 2060 Aluminum alloy Microstructure Mechanical properties 



This work was supported by the AVIC Manufacturing Technology Institute under Grant MJ-2016-G-63.


  1. 1.
    Z.Z. Chen, M. Li, X.G. Ma, Y. Xiao, Adv. Mater. Res. 842, 466 (2014)CrossRefGoogle Scholar
  2. 2.
    D. He, K. Yang, M. Li, H. Guo, N. Li, R. Lai, S. Ye, Sci. Technol. Weld. Join. 18, 610 (2013)CrossRefGoogle Scholar
  3. 3.
    Z.H. Guo, G.Y. Zhao, L.M. Ke, L.Z. Xing, Adv. Mater. Res. 346, 314 (2011)CrossRefGoogle Scholar
  4. 4.
    C.C. de Castro, A.H. Plaine, N.G. de Alcântara, J.F. dos Santos, Int. J. Adv. Manuf. Technol. 99, 1927 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Lin, Z.Q. Zheng, S.C. Li, X. Kong, Y. Han, Mater. Charact. 84, 88 (2013)CrossRefGoogle Scholar
  6. 6.
    R.J. Rioja, J. Liu, Metall. Mater. Trans. A 43, 3325 (2012)CrossRefGoogle Scholar
  7. 7.
    A.J. Beaudoin, M. Obstalecki, W. Tayon, M. Hernquist, R. Mudrock, P. Kenesei, U. Lienert, Acta Mater. 61, 3456 (2013)CrossRefGoogle Scholar
  8. 8.
    G. Pieta, J. dos Santos, T.R. Strohaecker, T. Clarke, Mater. Manuf. Process. 29, 934 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Kim, H. Badarinarayan, I. Ryu, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, K. Chung, Met. Mater. Int. 16, 323 (2010)CrossRefGoogle Scholar
  10. 10.
    P.B. Prangnell, D. Bakavos, Mater. Sci. Forum 638, 1237 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Sci. Technol. Weld. Join. 16, 605 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Han, Y. Huang, S. Lv, L. Wan, J. Feng, G. Fu, Mater. Des. 51, 25 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Ji, X. Meng, Y. Zeng, L. Ma, S. Gao, Mater. Des. 97, 175 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Zhao, H.J. Liu, Z. Lin, S.X. Chen, J.C. Hou, Sci. Technol. Weld. Join. 19, 617 (2014)CrossRefGoogle Scholar
  15. 15.
    A.H. Plaine, U. Suhuddin, N.G. de Alcântara, J.F. dos Santos, Int. J. Adv. Manuf. Technol. 92, 2 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, Y.H. Yin, Mater. Des. 54, 766 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Zhou, L.Y. Luo, T.P. Zhang, W.X. He, Y.X. Huang, J.C. Feng, Int. J. Adv. Manuf. Technol. 92, 3452 (2017)Google Scholar
  18. 18.
    Y. Shi, Y.M. Yue, L.G. Zhang, S.D. Ji, Y. Wang, Trans. Indian Inst. Metals 71, 139 (2018)CrossRefGoogle Scholar
  19. 19.
    B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li, H.P. Li, J. Alloy. Compd. 645, 15 (2015)Google Scholar
  20. 20.
    J.W. Peng, W.D. Li, M. Wan, C.S. Zhang, J. Li, G.G. Su, Int. J. Mater. Form. 269, 20 (2017)Google Scholar
  21. 21.
    Z.K. Shen, X.Q. Yang, Z.H. Zhang, L. Cui, T.L. Li, Mater. Des. 44, 476 (2012)CrossRefGoogle Scholar
  22. 22.
    T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. dos Santos, T.R. Strohaecker, N.G. Alcântara, Mater. Des. 32, 1094 (2011)CrossRefGoogle Scholar
  23. 23.
    L.C. Campanelli, U.F.H. Suhuddin, A.I.S. Antonialli, J.F. dos Santos, N.G. de Alcantara, C. Bolfarini, J. Mater. Process. Technol. 213, 515 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Parra, V.T. Saccon, N.G.D. Alcântara, Tecnol. Metal. Mater. Min. 8, 184 (2011)Google Scholar
  25. 25.
    Z. Li, S. Ji, Y.N. Ma, P. Chai, Y.M. Yue, S.S. Gao, Int. J. Adv. Manuf. Technol. 86, 1925 (2016)CrossRefGoogle Scholar
  26. 26.
    S.D. Ji, Y. Wang, Z.W. Li, Y.M. Yue, P. Chai, Trans. India Inst. Metals 70, 1417 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.M. Yue, Y. Shi, S.D. Ji, Y. Wang, Z.W. Li, J. Mater. Eng. Perform. 5064, 26 (2017)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingPeople’s Republic of China
  2. 2.Laboratory of FSWAVIC Manufacturing Technology InstituteBeijingPeople’s Republic of China

Personalised recommendations