Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1209–1226 | Cite as

Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete

  • Prvan Kumar Katiyar
  • Prasanna Kumar Behera
  • Sudhir Misra
  • K. MondalEmail author
Article
  • 122 Downloads

Abstract

This work aims at understanding the effect of microstructures (coarse, medium and fine ferrite–pearlite, martensite and tempered martensite) of a reinforced (rebar) steel developed by various heat-treatments (furnace cooling, air-cooling, force air-cooling, quenching, and tempering, respectively) on its corrosion behavior in freely aerated 3.5% NaCl + 3.5% FeCl3 solution. The impressed current technique was used for forcing corrosion of the rebar, which was embedded in concrete coupon, so that correlation could be drawn between microstructure and corrosion behavior in short duration. Corrosion susceptibility increased from force air-cooled–quenched–air cooled–furnace cooled–tempered steels. The crack formation in the concrete was directly related to the rust composition and thickness, presence of crack in the rust, alpha/gamma* ratio and critical corrosion amount.

Keywords

Rebar steel Heat treatment Microstructure Corrosion Concrete Rusts 

Notes

References

  1. 1.
    S. Ahmad, Cem. Concr. Compos. 25, 459 (2003)CrossRefGoogle Scholar
  2. 2.
    E.P. Kearsley, A. Joyce, J. S. Afr. Inst. Civil Eng. 56, 21 (2014)Google Scholar
  3. 3.
    R.R. Hussain, J.K. Singh, A. Alhozaimy, A. Al-Negheimish, C. Bhattacharya, R.S. Pathania, D.D.N. Singh, ACI Mater. J. 115, 181 (2018)Google Scholar
  4. 4.
    J. Shi, D. Ph, D. Wang, J. Ming, W. Sun, J. Mater. Civil Eng. 30, 1 (2018)Google Scholar
  5. 5.
    M. Serdar, C. Meral, M. Kunz, D. Bjegovic, H.R. Wenk, P.J.M. Monteiro, Cem. Concr. Res. 71, 93 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Serdar, L.V. Žulj, D. Bjegović, Corros. Sci. 69, 149 (2013)CrossRefGoogle Scholar
  7. 7.
    F. Presuel-Moreno, J.R. Scully, S.R. Sharp, NACE Int. Corros. Conf. Ser. 66, 1 (2009)Google Scholar
  8. 8.
    Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, A.B. Li, Mater. Chem. Phys. 77, 603 (2002)CrossRefGoogle Scholar
  9. 9.
    B.K. Panigrahi, S. Srikanth, G. Sahoo, J. Mater. Eng. Perform. 18, 1102 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Guo, S. Yang, C. Shang, Y. Wang, X. He, Corros. Sci. 51, 242 (2008)CrossRefGoogle Scholar
  11. 11.
    J.H. Wang, F.I. Wei, Y.S. Chang, H.C. Shih, Mater. Chem. Phys. 47, 1 (1997)CrossRefGoogle Scholar
  12. 12.
    J. Guo, C. Shang, S. Yang, H. Guo, X. Wang, X. He, Mater. Des. 30, 129 (2009)CrossRefGoogle Scholar
  13. 13.
    Q. Xu, K. Gao, W. Lv, X. Pang, Corros. Sci. 102, 114 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, H.C. Shih, Corros. Sci. 47, 1001 (2005)CrossRefGoogle Scholar
  15. 15.
    S.K. Nandi, N.K. Tewary, J.K. Saha, S.K. Ghosh, Corros. Eng. Sci. Technol. 51, 476 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Asami, M. Kikuchi, Corros. Sci. 45, 2671 (2003)CrossRefGoogle Scholar
  17. 17.
    T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Corros. Sci. 14, 279 (1974)CrossRefGoogle Scholar
  18. 18.
    E. Salamci, S. Candan, F. Kabakci, Kov. Mater. 55, 133 (2017)Google Scholar
  19. 19.
    P.P. Sarkar, P. Kumar, M.K. Manna, P.C. Chakraborti, Mater. Lett. 59, 2488 (2005)CrossRefGoogle Scholar
  20. 20.
    L.R. Bhagavathi, G.P. Chaudhari, S.K. Nath, Mater. Des. 32, 433 (2011)CrossRefGoogle Scholar
  21. 21.
    C.A. Palacios, J.R. Shadley, Corrosion 47, 122 (1991)CrossRefGoogle Scholar
  22. 22.
    W.R. Osório, L.C. Peixoto, L.R. Garcia, A. Garcia, Mater. Corros. 60, 804 (2009)CrossRefGoogle Scholar
  23. 23.
    V.C. Igwemezie, J.E.O. Ovri, Int. J. Eng. Sci. 2, 2319 (2013)Google Scholar
  24. 24.
    P.K. Behera, A. Prem, K. Moon, K. Mondal, S. Misra, J. Mater. Civil Eng. 28, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    Indian Standard, IS 516-1959 Methods of tests for strength of concrete (2006)Google Scholar
  26. 26.
    Indian Standard, IS 5816:1999 Splitting tensile strength of concrete (1999)Google Scholar
  27. 27.
    J.M. Gere, Mechanics of Materials, vol. sixth (Thomson Learning Inc., Stamford, 2008)Google Scholar
  28. 28.
    L. Hwang and S. Rizkalla, in Proceedings of the Canadian Society of Civil Engineering Structural Concrete Conference. Natural Science and Engineering Research Council of Canada, Ottawa, ON, Canada (1983), p. 1Google Scholar
  29. 29.
    J.K. Singh, D.D.N. Singh, Corros. Sci. 56, 129 (2012)CrossRefGoogle Scholar
  30. 30.
    T. Nishimura, Materials 10, 1 (2017)CrossRefGoogle Scholar
  31. 31.
    J.T. Keiser, J. Electrochem. Soc. 129, 2686 (1982)CrossRefGoogle Scholar
  32. 32.
    J.T. Keiser, C.W. Brown, R.H. Heidersbach, Corros. Sci. 23, 251 (1983)CrossRefGoogle Scholar
  33. 33.
    I. Suzuki, J. Electrochem. Soc. 127, 2210 (1980)CrossRefGoogle Scholar
  34. 34.
    L. Thi, H. Lien, H.L. Hong, Mater. Sci. Appl. 4, 6 (2013)Google Scholar
  35. 35.
    K. Asami, M. Kikuchi, J. Jpn. Inst. Metals Mater. 66, 649 (2002)CrossRefGoogle Scholar
  36. 36.
    Y. Waseda, S. Suzuki, Thermodynamics for Liquid Alloys Using Electron, vol. first (Springer, Berlin, 2006)Google Scholar
  37. 37.
    S. Choudhary, A. Garg, K. Mondal, J. Mater. Eng. Perform. 25, 2969 (2016)CrossRefGoogle Scholar
  38. 38.
    H.K.D.H. Bhadeshia, Interpretation of the Microstructure of Steels (University of Cambridge, Cambridge, 1999)Google Scholar
  39. 39.
    N. Kobasko, M. Aronov, J. Powell, J. Vanas, in WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (2009), p. 3Google Scholar
  40. 40.
    G. Kraus, Heat Treatment and Processing Principles (ASM International Ohio, Materials Park, 2005), pp. 63–67Google Scholar
  41. 41.
    M. Morcillo, D. De la Fuente, I. Díaz, H. Cano, Rev. Metal. 47, 426 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Yang, Y. Lu, Z. Guo, J. Gu, C. Gu, Corros. Sci. 130, 64 (2018)CrossRefGoogle Scholar
  43. 43.
    R. Balasubramaniam, A.V.R. Kumar, P. Dillmann, Sci. Archaeol. Archaeomaterials 85, 275 (2005)Google Scholar
  44. 44.
    M. Morcillo, R. Wolthuis, J. Alcántara, B. Chico, I. Díaz, D. De La Fuente, Corrosion 72, 1044 (2016)Google Scholar
  45. 45.
    R. Balasubramaniam, A.V.R. Kumar, Corros. Sci. 42, 2085 (2000)CrossRefGoogle Scholar
  46. 46.
    U.M. Angst, M.R. Geiker, A. Michel, C. Gehlen, H. Wong, O.B. Isgor, B. Elsener, C.M. Hansson, R. François, K. Hornbostel, R. Polder, M.C. Alonso, M. Sanchez, M.J. Correia, M. Criado, A. Sagüés, N. Buenfeld, Mater. Struct. Constr. 50, 1 (2017)CrossRefGoogle Scholar
  47. 47.
    J. Alcántara, D. Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Materials 10, 1 (2017)CrossRefGoogle Scholar
  48. 48.
    G. Malumbela, M. Alexander, P. Moyo, Constr. Build. Mater. 25, 987 (2011)CrossRefGoogle Scholar
  49. 49.
    T. El Maaddawy, K. Soudki, T. Topper, ACI Struct. J. 102, 649 (2005)Google Scholar
  50. 50.
    Y. Liu, R.E. Weyers, Mater. J. 95, 675 (1998)Google Scholar
  51. 51.
    K. Bhargava, A.K. Ghosh, Y. Mori, S. Ramanujam, Nucl. Eng. Des. 236, 1123 (2006)CrossRefGoogle Scholar
  52. 52.
    K. Bhargava, A.K. Ghosh, Y. Mori, S. Ramanujam, Cem. Concr. Res. 35, 2203 (2005)CrossRefGoogle Scholar
  53. 53.
    I. Balafas, C.J. Burgoyne, J. Eng. Mech. 137, 175 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Suda, S. Misra, K. Motohashi, Corros. Sci. 35, 1543 (1993)CrossRefGoogle Scholar
  55. 55.
    K. Yokozeki, K. Motohash, K. Okada, T.T. Tsutsumi, in Fourth CANMET/ACI International Conference on Durability of Concrete (SP 170-40) (1997), p. 777Google Scholar
  56. 56.
    P.K. Katiyar, S. Misra, K. Mondal, J. Mater. Eng. Perform. 27, 1753 (2018)CrossRefGoogle Scholar
  57. 57.
    K.D. Ralston, N. Birbilis, Corrosion 66, 1 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Prvan Kumar Katiyar
    • 1
  • Prasanna Kumar Behera
    • 2
  • Sudhir Misra
    • 2
  • K. Mondal
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Civil EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations