Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1360–1365 | Cite as

Influence of Exposure Temperature on Degradation of Magnesia Refractory by Steel Refining Slags

  • Jin Sung Han
  • Yongsug Chung
  • Joo Hyun ParkEmail author
Article
  • 98 Downloads

Abstract

Corrosion rate of refractory increases as the temperature increases and viscosity of slag decreases. The slag of low viscosity can more easily penetrate into the refractory materials and it causes the refractory degradation. Thus, the corrosion and/or erosion of refractory materials should be thoroughly evaluated under steelmaking conditions. In this study, the experiments were conducted using induction furnace. The steel (Fe-0.8C-0.2Si-0.4Mn-1.2Cr, wt%) and the CaO-Al2O3-8SiO2-5MgO-10CaF2 (C/A = 1.9, wt%) slag were equilibrated in a magnesia refractory at 1520 to 1650 °C. As a results, the penetration depth of slag into the magnesia refractory increased with increasing exposure temperature, which originated from a decrease in viscosity of the slag. It also confirmed that MgO particles were detached from slag/refractory interface by increasing exposure temperature.

Keywords

Ladle refining slag Magnesia refractory Penetration depth Viscosity Degradation Exposure temperature 

Notes

Acknowledgements

This work was partly supported by the Industrial Strategic Technology Development program (Grant Number 10063056) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea. In addition, this research was partly funded by the Competency Development Program for Industry Specialists (Grant Number P0002019) of the MOTIE, Korea.

References

  1. 1.
    W.E. Lee, S. Zhang, Melt corrosion of oxide and oxide-carbon refractories. Int. Mater. Rev. 44, 77–104 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, W.E. Lee, Use of phase diagram in studies of refractories corrosion. Int. Mater. Rev. 45, 41–58 (2000)CrossRefGoogle Scholar
  3. 3.
    S.A. Nightingale, G.A. Brooks, B.J. Monaghan, Degradation of MgO refractory in CaO-SiO2-MgO-FeOx and CaO-SiO2-Al2O3-MgO-FeOx slags under forced convection. Metall. Mater. Trans. B 36B, 453–461 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, G.A. Brooks, S.A. Nightingale, Slag line dissolution of MgO refractory. Can. Metall. Quart. 44, 451–453 (2005)CrossRefGoogle Scholar
  5. 5.
    J.S. Park, D.H. Kim, J.H. Park, Thermodynamic stability of spinel phase at the interface between Alumina Refractory and CaO-CaF2-SiO2-MgO-MnO Slags. J. Am. Ceram. Soc. 98, 1974–1981 (2015)CrossRefGoogle Scholar
  6. 6.
    J.H. Park, M.O. Suk, I.H. Jung, M. Guo, B. Blanpain, Interfacial reaction between refractory materials and metallurgical slags containing fluoride. Steel Res. Int. 81, 860–868 (2010)CrossRefGoogle Scholar
  7. 7.
    J.H. Park, Formation of CaZrO3 at the interface between CaO-SiO2-MgO-CaF2 (-ZrO2) slags and magnesia refractories: computational and experimental study. CALPHAD 31, 149–154 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Um, K. Lee, J. Choi, Y. Chung, Corrosion behavior of MgO-C refractory in ferromanganese slags. ISIJ Int. 52, 62–67 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Jansson, V. Brabie, P.G. Jonsson, Corrosion mechanism and kinetic behavior of MgO-C refractory material in contact with CaO-Al2O3-SiO2-MgO slag. Scand. J. Metall. 34, 283–292 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Mukai, Z. Tao, K. Goto, Z. Li, T. Takashima, In-situ observation of slag penetration into MgO refractory. Scand. J. Metall. 31, 68–78 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Zhong, K. Mukai, M. Zeze, K. Miyamoto, N. Sano, In-situ observation of penetration of molten slag into solid lime at high temperature. Steel Res. Int. 78, 236–240 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Zhang, H.R. Rezaie, H. Sarpoolaky, W.E. Lee, Alumina dissolution into silicate slag. J. Am. Ceram. Soc. 83, 897–903 (2000)CrossRefGoogle Scholar
  13. 13.
    M.K. Cho, G.G. Hong, S.K. Lee, Corrosion of spinel clinker by CaO-Al2O3-SiO2 ladle slag. J. Eur. Ceram. Soc. 22, 1783–1790 (2002)CrossRefGoogle Scholar
  14. 14.
    A.R. Pal, S. Bharati, N.V.S. Krishna, G.C. Das, P.G. Pal, Study of penetration and corrosion of olivine-periclase and periclase based tundish DVMs by molten slag. Ironmaking Steelmaking 38, 602–607 (2011)CrossRefGoogle Scholar
  15. 15.
    A.P. Luz, A.G.T. Martinez, M.A.L. Braulio, V.C. Pandolfelli, Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag. Ceram. Int. 37, 1191–1201 (2011)CrossRefGoogle Scholar
  16. 16.
    M.H. Amin, A. Kazemzadeh, B. Arfaei, N.S. Chaudhury, V. Sahajwalla, Investigations of calcium aluminate slag penetration to MgO monolithic refractories in steelmaking process. Int. J. ISSI 3, 34–42 (2006)Google Scholar
  17. 17.
    J.S. Han, J.G. Kang, J.H. Shin, Y. Chung, J.H. Park, Influence of CaF2 in calcium aluminate-based slag on the degradation of magnesia refractory. Ceram. Int. 44, 13197–13204 (2018)CrossRefGoogle Scholar
  18. 18.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, FactSage thermochemical software and databases, 2010–2016. CALPHAD 54, 35–53 (2016)CrossRefGoogle Scholar
  19. 19.
    T.S. Kim, J.H. Park, Structure-viscosity relationship of low-silica calcium aluminosilicate melts. ISIJ Int. 54, 2031–2038 (2014)CrossRefGoogle Scholar
  20. 20.
    E.W. Washburn, The dynamic of capillary flow. Phys. Rev. 17, 273–283 (1921)CrossRefGoogle Scholar
  21. 21.
    Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, (Dusseldorf, Germany, 1995)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringHanyang UniversityAnsanRepublic of Korea
  2. 2.Department of Advanced Materials EngineeringKorea Polytechnic UniversitySiheungRepublic of Korea

Personalised recommendations