Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1341–1359 | Cite as

Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review

  • Soheil Amani
  • Ghader FarajiEmail author
Article

Abstract

Magnesium and its alloys have attracted a great deal of attention in the field of biomedical applications, especially biodegradable stents. However, they have not been extensively used because of some inherent limitations such as poor mechanical properties and high corrosion rate. During the last decade, the selected fabrication methods for producing stent precursors is of great importance and can significantly affect the final stent’s properties. In this paper, the progress of fabrication methods and properties of Mg microtubes for using as biodegradable stents are reviewed. The paper will firstly classify the fabrication methods, and then investigate produced microtubes’ properties from the perspective of mechanical, microstructural and biocorrosion properties.

Keywords

Biodegradable stents Microtube Magnesium alloys Fabrication method Microstructure Mechanical properties 

Notes

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

References

  1. 1.
    F. Alfonso, J. García, M.-J. Pérez-Vizcayno, L. Hernando, R. Hernandez, J. Escaned, P. Jiménez-Quevedo, C. Bañuelos, C. Macaya, J. Am. Coll. Cardiol. 54, 1036–1038 (2009)Google Scholar
  2. 2.
    P.N. Malani, JAMA 308, 1813–1814 (2012)Google Scholar
  3. 3.
    M. Niinomi, J. Artif. Organs 11, 105 (2008)Google Scholar
  4. 4.
    B. Bhargava, I. De Scheerder, Q.B. Ping, H. Yanming, R. Chan, H. Soo Kim, M. Kollum, Y. Cottin, M.B. Leon, Catheter Cardiovasc. Interv. 51, 364–368 (2000)Google Scholar
  5. 5.
    G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials 28, 1689–1710 (2007)Google Scholar
  6. 6.
    N. Kipshidze, G. Dangas, M. Tsapenko, J. Moses, M.B. Leon, M. Kutryk, P. Serruys, J. Am. Coll. Cardiol. 44, 733–739 (2004)Google Scholar
  7. 7.
    G.D. Dangas, B.E. Claessen, A. Caixeta, E.A. Sanidas, G.S. Mintz, R. Mehran, J. Am. Coll. Cardiol. 56, 1897–1907 (2010)Google Scholar
  8. 8.
    A. Kastrati, R. Byrne, JACC Cardiovasc. Interv. 4, 165–167 (2011)Google Scholar
  9. 9.
    S. Cassese, R.A. Byrne, T. Tada, S. Pinieck, M. Joner, T. Ibrahim, L.A. King, M. Fusaro, K.-L. Laugwitz, A. Kastrati, Heart 100, 153–159 (2014)Google Scholar
  10. 10.
    D. Giacoppo, G. Gargiulo, P. Aruta, P. Capranzano, C. Tamburino, D. Capodanno, BMJ 351, h5392 (2015)Google Scholar
  11. 11.
    M. Valgimigli, H. Bueno, R.A. Byrne, J.-P. Collet, F. Costa, A. Jeppsson, P. Jüni, A. Kastrati, P. Kolh, L. Mauri, Eur. J. Cardiothorac. Surg. 53, 34–78 (2017)Google Scholar
  12. 12.
    J. Torrado, L. Buckley, A. Durán, P. Trujillo, S. Toldo, J.V. Raleigh, A. Abbate, G. Biondi-Zoccai, L.A. Guzmán, J. Am. Coll. Cardiol. 71, 1676–1695 (2018)Google Scholar
  13. 13.
    U. Baber, R. Mehran, G. Giustino, D.J. Cohen, T.D. Henry, S. Sartori, C. Ariti, C. Litherland, G. Dangas, C.M. Gibson, J. Am. Coll. Cardiol. 67, 2224–2234 (2016)Google Scholar
  14. 14.
    T.R. Welch, in Congenital Heart Disease Intervention, An Issue of Interventional Cardiology Clinics, vol. 8 (Ebook, 2018), p. 81Google Scholar
  15. 15.
    L. Mao, J. Chen, X. Zhang, M. Kwak, Y. Wu, R. Fan, L. Zhang, J. Pei, G. Yuan, C. Song, Sci. Rep. 7, 46343 (2017)Google Scholar
  16. 16.
    R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, Catheter Cardiovasc. Interv. 68, 607–617 (2006)Google Scholar
  17. 17.
    M. Bornapour, H. Mahjoubi, H. Vali, D. Shum-Tim, M. Cerruti, M. Pekguleryuz, Mater. Sci. Eng., C 67, 72–84 (2016)Google Scholar
  18. 18.
    H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, M.V. Manuel, JOM 61, 31–34 (2009)Google Scholar
  19. 19.
    P.K. Bowen, W.H. Sillekens, JOM 68, 1175–1176 (2016)Google Scholar
  20. 20.
    H.S. Brar, B.G. Keselowsky, M. Sarntinoranont, M.V. Manuel, JOM 63, 100–104 (2011)Google Scholar
  21. 21.
    R. Werkhoven, W. Sillekens, J. Van Lieshout, in Processing Aspects of Magnesium Alloy Stent Tube, Magnesium Technology 2011 (Springer, 2011), pp. 419–424Google Scholar
  22. 22.
    N.C. Andrews, N. Engl. J. Med. 341, 1986–1995 (1999)Google Scholar
  23. 23.
    M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, Heart 86, 563–569 (2001)Google Scholar
  24. 24.
    M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg, Biomaterials 27, 4955–4962 (2006)Google Scholar
  25. 25.
    R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, F.O. Tio, J. Interv. Cardiol. 21, 15–20 (2008)Google Scholar
  26. 26.
    P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar, J. Goldman, Emerg. Mater. Res. 1, 237–255 (2012)Google Scholar
  27. 27.
    D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, J. Drelich, J. Biomed. Mater. Res. Part B Appl. Biomater. 100, 58–67 (2012)Google Scholar
  28. 28.
    P.K. Bowen, J.A. Gelbaugh, P.J. Mercier, J. Goldman, J. Drelich, J. Biomed. Mater. Res. B Appl. Biomater. 100, 2101–2113 (2012)Google Scholar
  29. 29.
    M. Peuster, P. Beerbaum, F.-W. Bach, H. Hauser, Cardiol. Young 16, 107–116 (2006)Google Scholar
  30. 30.
    H. Tapiero, K.D. Tew, Biomed. Pharmacother. 57, 399–411 (2003)Google Scholar
  31. 31.
    P. Trumbo, A.A. Yates, S. Schlicker, M. Poos, J. Am. Diet. Assoc. 101, 294–301 (2001)Google Scholar
  32. 32.
    G.J. Fosmire, Am. J. Clin. Nutr. 51, 225–227 (1990)Google Scholar
  33. 33.
    K.M. Hambidge, N.F. Krebs, J. Nutr. 137, 1101–1105 (2007)Google Scholar
  34. 34.
    A.S. Prasad, Mol. Med. 14, 353 (2008)Google Scholar
  35. 35.
    J. Kubasek, D. Vojtěch, Metal 5, 23–25 (2012)Google Scholar
  36. 36.
    P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25, 2577–2582 (2013)Google Scholar
  37. 37.
    H. Li, X. Xie, Y. Zheng, Y. Cong, F. Zhou, K. Qiu, X. Wang, S. Chen, L. Huang, L. Tian, Sci. Rep. 5, 10719 (2015)Google Scholar
  38. 38.
    P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. B Appl. Biomater. 106, 245–258 (2018)Google Scholar
  39. 39.
    H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83, 95–102 (2015)Google Scholar
  40. 40.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728–1734 (2006)Google Scholar
  41. 41.
    N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Clin. Chim. Acta 294, 1–26 (2000)Google Scholar
  42. 42.
    R.F. Schmidt, F. Lang, M. Heckmann, Physiologie des menschen: mit pathophysiologie (Springer, New York, 2011)Google Scholar
  43. 43.
    X.-N. Gu, Y.-F. Zheng, Front. Mater. Sci. Chin. 4, 111–115 (2010)Google Scholar
  44. 44.
    E. Huse, Chicago Med. J. Exam, 172 (1878)Google Scholar
  45. 45.
    E. Payr, Arch Klin Chir 62, 67–93 (1900)Google Scholar
  46. 46.
    F. Witte, Acta Biomater. 6, 1680–1692 (2010)Google Scholar
  47. 47.
    B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Heart 89, 651–656 (2003)Google Scholar
  48. 48.
    C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, J. Interv. Cardiol. 17, 391–395 (2004)Google Scholar
  49. 49.
    P. Zartner, R. Cesnjevar, H. Singer, M. Weyand, Catheter Cardiovasc. Interv. 66, 590–594 (2005)Google Scholar
  50. 50.
    P. Peeters, M. Bosiers, J. Verbist, K. Deloose, B. Heublein, J. Endovasc. Ther. 12, 1–5 (2005)Google Scholar
  51. 51.
    D. Schranz, P. Zartner, I. Michel-Behnke, H. Akintürk, Catheter Cardiovasc. Interv. 67, 671–673 (2006)Google Scholar
  52. 52.
    R. Waksman, R. Pakala, T. Okabe, D. Hellinga, R. Chan, M.O. Tio, E. Wittchow, S. Hartwig, K.H. Waldmann, C. Harder, J. Interv. Cardiol. 20, 367–372 (2007)Google Scholar
  53. 53.
    C.J. McMahon, P. Oslizlok, K.P. Walsh, Catheter Cardiovasc. Interv. 69, 735–738 (2007)Google Scholar
  54. 54.
    R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, The Lancet 369, 1869–1875 (2007)Google Scholar
  55. 55.
    A.W. Martinez, E.L. Chaikof, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 256–268 (2011)Google Scholar
  56. 56.
    D. Stoeckel, C. Bonsignore, S. Duda, Minim. Invasive Ther. Allied Technol. 11, 137–147 (2002)Google Scholar
  57. 57.
    S. Jamali, G. Faraji, K. Abrinia, Mater. Sci. Eng. A 666, 176–183 (2016)Google Scholar
  58. 58.
    S. Jamali, G. Faraji, K. Abrinia, Int. J. Adv. Manuf. Technol. 88, 291–301 (2017)Google Scholar
  59. 59.
    G. Fang, W. Ai, M. Leeflang, in Proceedings of the 10th International Conference on Technology of Plasticity (ICTP2011), Aachen, Germany, 2011, pp. 1087–1092Google Scholar
  60. 60.
    Q. Ge, M. Vedani, G. Vimercati, Mater. Manuf. Process. 27, 140–146 (2012)Google Scholar
  61. 61.
    M. Vedani, Q. Ge, W. Wu, L. Petrini, Int.J. Mater. Form. 7, 31–38 (2014)Google Scholar
  62. 62.
    K. Yoshida, A. Koiwa, J. Solid Mech. Mater. Eng. 5, 1071–1078 (2011)Google Scholar
  63. 63.
    P. Kumar, G. Agnihotri, Int. J. Eng. Res. Appl. 3, 988–994 (2013)Google Scholar
  64. 64.
    B. Gerold, H. Müller, Konzept für biologisch abbaubare Implantate aus Magnesium, na, 2006Google Scholar
  65. 65.
    K. Hanada, K. Matsuzaki, X. Huang, Y. Chino, Mater. Sci. Eng. C 33, 4746–4750 (2013)Google Scholar
  66. 66.
    G. Fang, W.-J. Ai, S. Leeflang, J. Duszczyk, J. Zhou, Mater. Sci. Eng. C 33, 3481–3488 (2013)Google Scholar
  67. 67.
    L. Wang, G. Fang, L. Qian, S. Leeflang, J. Duszczyk, J. Zhou, Prog. Nat. Sci. Mater. Int. 24, 500–506 (2014)Google Scholar
  68. 68.
    F. Liu, C. Chen, J. Niu, J. Pei, H. Zhang, H. Huang, G. Yuan, Mater. Sci. Eng. C 48, 400–407 (2015)Google Scholar
  69. 69.
    T. Furushima, K. Manabe, J. Mater. Process. Technol. 191, 59–63 (2007)Google Scholar
  70. 70.
    K. Manabe, T. Shimizu, T. Furushima, in Proceedings of the 2005 Japanese Spring Conference for the Technology of Plasticity, 2005, pp. 39–40Google Scholar
  71. 71.
    P. Kustra, A. Milenin, B. Płonka, T. Furushima, J. Mater. Eng. Perform. 25, 2528–2535 (2016)Google Scholar
  72. 72.
    A. Milenin, P. Kustra, D. Byrska-Wójcik, T. Furushima, Procedia Eng. 207, 2352–2357 (2017)Google Scholar
  73. 73.
    G. Faraji, H.S. Kim, Mater. Sci. Technol. 33, 905–923 (2017)Google Scholar
  74. 74.
    M. Kawasaki, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 47, 7719–7725 (2012)Google Scholar
  75. 75.
    M. Eftekhari, A. Fata, G. Faraji, M.M. Mashhadi, J. Alloys Compd. 742, 442–453 (2018)Google Scholar
  76. 76.
    A. Fata, G. Faraji, M. Mashhadi, H. Abdolvand, Trans. Indian Inst. Met. 70, 1369–1376 (2017)Google Scholar
  77. 77.
    A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Arch. Metall. Mater. 62, 159–166 (2017)Google Scholar
  78. 78.
    A. Fata, G. Faraji, M.M. Mashhadi, V. Tavakkoli, Mater. Sci. Eng. A 674, 9–17 (2016)Google Scholar
  79. 79.
    G. Argade, S. Panigrahi, R. Mishra, Corros. Sci. 58, 145–151 (2012)Google Scholar
  80. 80.
    Y. Zheng, X. Gu, F. Witte, Mater. Sci. Eng. R Rep. 77, 1–34 (2014)Google Scholar
  81. 81.
    G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Lett. 65, 3009–3012 (2011)Google Scholar
  82. 82.
    V. Segal, V. Reznikov, A. Dobryshevshiy, V. Kopylov, Rus. Metall. (Metally) 1, 99–105 (1981)Google Scholar
  83. 83.
    M. Richert, Q. Liu, N. Hansen, Mater. Sci. Eng. A 260, 275–283 (1999)Google Scholar
  84. 84.
    A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893–979 (2008)Google Scholar
  85. 85.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103–189 (2000)Google Scholar
  86. 86.
    G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134–138 (2014)Google Scholar
  87. 87.
    M. Ensafi, G. Faraji, H. Abdolvand, Mater. Lett. 197, 12–16 (2017)Google Scholar
  88. 88.
    H. Abdolvand, G. Faraji, J.S. Karami, M. Baniasadi, Bull. Mater. Sci. 40, 1471–1479 (2017)Google Scholar
  89. 89.
    H. Abdolvand, H. Sohrabi, G. Faraji, F. Yusof, Mater. Lett. 143, 167–171 (2015)Google Scholar
  90. 90.
    A.S. Mohammadi, M.M. Mashhadi, G. Faraji, Modares Mech. Eng. 15, 126–130 (2015)Google Scholar
  91. 91.
    W. Guo, Q. Wang, B. Ye, M. Liu, T. Peng, X. Liu, H. Zhou, Mater. Sci. Eng. A 540, 115–122 (2012)Google Scholar
  92. 92.
    S. Amani, G. Faraji, K. Abrinia, Journal of Manufacturing Processes 28, 197–208 (2017)Google Scholar
  93. 93.
    F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H. Kim, Mater. Des. 43, 31–39 (2013)Google Scholar
  94. 94.
    L.-P. Wang, C. Tian, W.-Y. Jiang, Y.-C. Feng, G.-J. Cao, Z. Yan, Trans. Nonferrous Met. Soc. China 23, 3200–3205 (2013)Google Scholar
  95. 95.
    A. Salandari-Rabori, A. Zarei-Hanzaki, S. Fatemi, M. Ghambari, M. Moghaddam, J. Alloys Compd. 693, 406–413 (2017)Google Scholar
  96. 96.
    S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, H. Ghanbari, J. Alloys Compd. 723, 467–476 (2017)Google Scholar
  97. 97.
    T. Furushima, T. Shimizu, K. Manabe, in Materials Science Forum (Trans Tech Publication, 2010), pp. 735–738Google Scholar
  98. 98.
    Q. Ge, D. Dellasega, A.G. Demir, M. Vedani, Acta Biomater. 9, 8604–8610 (2013)Google Scholar
  99. 99.
    E. Mostaed, M. Vedani, M. Hashempour, M. Bestetti, Biomatter 4, e28283 (2014)Google Scholar
  100. 100.
    G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Sci. Eng. A 528, 4312–4317 (2011)Google Scholar
  101. 101.
    A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1199–1207 (2001)Google Scholar
  102. 102.
    S. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A 527, 52–60 (2009)Google Scholar
  103. 103.
    W.-J. Ai, G. Fang, J. Zhou, M. Leeflang, J. Duszczyk, Mater. Sci. Eng. A 556, 373–381 (2012)Google Scholar
  104. 104.
    D. Liu, C. Guo, L. Chai, V.R. Sherman, X. Qin, Y. Ding, M.A. Meyers, Mater. Sci. Eng. B 195, 50–58 (2015)Google Scholar
  105. 105.
    X. Liu, J. Sun, Y. Yang, Z. Pu, Y. Zheng, Mater. Lett. 161, 53–56 (2015)Google Scholar
  106. 106.
    C.-J. Li, H.-F. Sun, S. Cheng, H.-M. Tan, T.-H. He, W.-B. Fang, Mater. Res. Express 6, 026539 (2018)Google Scholar
  107. 107.
    J. Wang, Y. Zhou, Z. Yang, S. Zhu, L. Wang, S. Guan, Mater. Sci. Eng. C 90, 504–513 (2018)Google Scholar
  108. 108.
    S. Amani, G. Faraji, H.K. Mehrabadi, M. Baghani, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 1196–1205 (2019)Google Scholar
  109. 109.
    A. Meyer-Lindenberg, H. Windhugen, F. Witte, Google Patents, 2004Google Scholar
  110. 110.
    G. Song, Corros. Sci. 49, 1696–1701 (2007)Google Scholar
  111. 111.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, Biomaterials 26, 3557–3563 (2005)Google Scholar
  112. 112.
    V. Neubert, I. Stulíková, B. Smola, B. Mordike, M. Vlach, A. Bakkar, J. Pelcová, Mater. Sci. Eng. A 462, 329–333 (2007)Google Scholar
  113. 113.
    X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30, 484–498 (2009)Google Scholar
  114. 114.
    Y. Nakamura, Y. Tsumura, Y. Tonogai, T. Shibata, Y. Ito, Toxicol. Sci. 37, 106–116 (1997)Google Scholar
  115. 115.
    M. Li, Y. Cheng, Y. Zheng, X. Zhang, T. Xi, S. Wei, Appl. Surf. Sci. 258, 3074–3081 (2012)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations