Advertisement

Evaluation of the Microstructural Aspects, Mechanical Properties and Dry Sliding Wear Response of MoTaNbVTi Refractory High Entropy Alloy

  • Anthoula PouliaEmail author
  • Emmanuel Georgatis
  • Alexander Karantzalis
Article
  • 67 Downloads

Abstract

MoTaNbVTi refractory high entropy alloy was synthesized by the vacuum arc melting technique in its equi-atomic composition. The modification of its microstructural features along the vertical cross-section of the sample was associated with undercooling phenomena and the release of heat of fusion. The examined system exhibited high micro and macro-hardness values, while concerning its compression tests, it presented an improved mechanical behavior compared with other refractory systems studied, ensuring the highest ductility values. In terms of sliding wear response, the use of a metallic counterbody partner combined with the increase in sliding distance, led to possible thermal fatigue effects, while the presence of a ceramic counterbody ball was associated with the lubrication action of the formed oxides and the improvement of the alloy’s tribological response, as the sliding distance increased.

Keywords

High-entropy alloys Microstructure Fracture Tribological properties 

Notes

Compliance with Ethical Standards

Conflict of interest

The author declares that they have no conflict of interest.

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)CrossRefGoogle Scholar
  2. 2.
    B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Ma, Q. Wang, C. Li, L.J. Santodonato, M. Feygenson, C. Dong, P.K. Liaw, Scr. Mater. 144, 64 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, Mater. Trans. 57, 1197 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Feng, M.C. Gao, C. Lee, M. Mathes, T.T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, P. Liaw, Entropy 18, 333 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J.C. Neuefeind, Y. Reng, P.K. Liaw, Acta Mater. 146, 280 (2018)CrossRefGoogle Scholar
  7. 7.
    K.K. Tseng, Y.C. Yang, C.C. Juan, T.S. Chin, C.W. Tsai, J.W. Yeh, Sci. China Technol. Sci. 61, 184 (2018)CrossRefGoogle Scholar
  8. 8.
    F.G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, A. Clarke, Mater. Design 155, 244 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Feuerbacher, T. Lienig, C. Thomas, Scr. Mater. 152, 40 (2018)CrossRefGoogle Scholar
  10. 10.
    J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, W.B. Zhang, Z.T. Fan, Intermetallics 98, 79 (2018)CrossRefGoogle Scholar
  11. 11.
    Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712, 380 (2018)CrossRefGoogle Scholar
  12. 12.
    D. Ikeuchi, D.J.M. King, K.J. Laws, A.J. Knowles, R.D. Aughterson, G.R. Lumpkin, E.G. Obbard, Scr. Mater. 158, 141 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Gorsse, J.P. Couzinié, D.B. Miracle, Comptes Rendus Phys. (2018)  https://doi.org/10.1016/j.crhy.2018.09.004
  14. 14.
    M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)CrossRefGoogle Scholar
  15. 15.
    J.W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006)CrossRefGoogle Scholar
  16. 16.
    J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560, 1 (2007)CrossRefGoogle Scholar
  17. 17.
    J.W. Yeh, JOM 65, 1759 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Jadhav, S. Singh, M. Srivastava, G.S. Vidor Kumar, J. Alloys Compd. 783, 30 (2019)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)CrossRefGoogle Scholar
  20. 20.
    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Parkin, M. Moorehead, Z. Yu, A. Couet, K. Sridharan, Trans. Am. Nucl. Soc. 118, 1583 (2018)Google Scholar
  23. 23.
    D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K.T. Møller, T.C. Hansen, J. Bednarčík, M. Paskevicius, M.H. Sørby, T.R. Jensen, U. Jansson, M. Sahlberg, Inorg. Chem. 57, 2103 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Praveen, H.S. Kim, Adv. Eng. Mater. 20, 1700645-1 (2018)CrossRefGoogle Scholar
  25. 25.
    W.H. Wu, C.C. Yang, J.W. Yeh, Ann. Chim. Sci. Mater. 31, 737 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, Y. Zhou, Mater. Sci. Forum 561, 1337 (2007)CrossRefGoogle Scholar
  27. 27.
    M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.G. Stocks, Phys. Rev. X 5, 011041-1 (2015)Google Scholar
  28. 28.
    D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Acta Mater. 104, 172 (2016)CrossRefGoogle Scholar
  29. 29.
    O. Senkov, D.B. Miracle, J. Alloys Compd. 658, 603 (2016)CrossRefGoogle Scholar
  30. 30.
    R.S. Mishra, N. Kumar, M. Komarasamy, J. Mater. Sci. Technol. 31, 1259 (2015)CrossRefGoogle Scholar
  31. 31.
    H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloys Compd. 696, 1139 (2017)CrossRefGoogle Scholar
  32. 32.
    T. Yang, Y. Zhao, W. Liu, J. Kai, C. Liu, J. Mater. Res. 33, 2983 (2018)CrossRefGoogle Scholar
  33. 33.
    C. Dang, J.U. Surjadi, L. Gao, Y. Lu, Front. Mater. 5, 1 (2018)CrossRefGoogle Scholar
  34. 34.
    N. Stepanov, D.G. Shaysultanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Forum 838, 302 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Sun, P. Chen, L. Liu, M. Yan, X. Wu, C. Yu, Z. Liu, Intermetallics 93, 85 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, Y. Li, X. Cheng, C. Wu, B. Cheng, Z. Xu, Materials 11, 1 (2018)Google Scholar
  37. 37.
    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Design 81, 87 (2015)CrossRefGoogle Scholar
  38. 38.
    I. Toda-Caraballo, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 85, 14 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118, 164 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Li, G. Wang, S. Wu, P.K. Liaw, J. Mater. Res. 33, 3011 (2018)CrossRefGoogle Scholar
  41. 41.
    W. Li, P.K. Liaw, Y. Gao, Intermetallics 99, 69 (2018)CrossRefGoogle Scholar
  42. 42.
    V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Sci. Rep. 8, 1 (2018)CrossRefGoogle Scholar
  43. 43.
    S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Design 133, 122 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, J. Qiao, J. Mater. Res. 33, 3310 (2018)CrossRefGoogle Scholar
  45. 45.
    K. Lentzaris, A. Poulia, E. Georgatis, A.G. Lekatou, A.E. Karantzalis, J. Mater. Eng. Perform. 27, 5177 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Mater. Chem. Phys. 210, 233 (2018)CrossRefGoogle Scholar
  47. 47.
    A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Int. J. Refract. Metals Hard Mater. 57, 50 (2016)CrossRefGoogle Scholar
  48. 48.
    C. Mathiou, A. Poulia, E. Georgatis, A.E. Karantzalis, Mater. Chem. Phys. 210, 126 (2018)CrossRefGoogle Scholar
  49. 49.
    H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, Y. Lu, J. Mater. Sci. Technol. 33, 712 (2017)CrossRefGoogle Scholar
  50. 50.
    H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, T. Li, Mater. Design 142, 101 (2018)CrossRefGoogle Scholar
  51. 51.
    N.D. Stepanov, N. Yurchenko, A.O. Gridneva, S. Zherebtsov, Y. Ivanisenko, G. Salishchev, Mater. Sci. Eng. A 716, 308 (2018)CrossRefGoogle Scholar
  52. 52.
    N. Yurchenko, N. Stepanov, G. Salishchev, J. Mater. Sci. Technol. 33, 17 (2017)CrossRefGoogle Scholar
  53. 53.
    D.M. Herlach, Mater. Sci. Forum 539, 1977 (2007)CrossRefGoogle Scholar
  54. 54.
    A. Karma, Int. J. Non-Equilib. Process. 11, 201 (1998)Google Scholar
  55. 55.
    A. Kumar, P. Dutta, J. Phys. D Appl. Phys. 41, 155501-1 (2008)Google Scholar
  56. 56.
    W. Yang, F. Liu, Z.F. Xu, B.P. Lu, G.C. Yang, J. Mater. Sci. 46, 3101 (2011)CrossRefGoogle Scholar
  57. 57.
    Y. Wu, T.J. Piccone, Y. Shiohara, M.C. Flemings, Metall. Trans. A 18, 915 (1987)CrossRefGoogle Scholar
  58. 58.
    O.N. Senkov, C.F. Woodward, Mater. Sci. Eng. 529, 311 (2011)CrossRefGoogle Scholar
  59. 59.
    O.N. Senkov, S.V. Senkova, C. Woodwart, D.B. Miracle, Mater. Sci. Eng. 565, 51 (2013)CrossRefGoogle Scholar
  60. 60.
    A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107, 424 (2016)CrossRefGoogle Scholar
  61. 61.
    S.P. Wang, J. Xu, Mater. Sci. Eng. C 73, 80 (2017)CrossRefGoogle Scholar
  62. 62.
    X. Yang, Y. Zhang, P. Liaw, Proc. Eng. 36, 292 (2012)CrossRefGoogle Scholar
  63. 63.
    H. Song, F. Tian, Q.M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Phys. Rev. Mater. 1, 023404-1 (2017)Google Scholar
  64. 64.
    I.V. Kragelsky, M.N. Dobychin, V.S. Kompalov, Friction and Wear Calculation Methods, 1st edn. (Pergamon Press, Oxford, 1982)Google Scholar
  65. 65.
    T.A. Stolarski, Tribol. Int. 36, 559 (2001)CrossRefGoogle Scholar
  66. 66.
    F.E. Kennedy, Wear 100, 453 (1984)CrossRefGoogle Scholar
  67. 67.
    M.J. Furey, Wear 7, 133 (1964)Google Scholar
  68. 68.
    F.H. Stott, G.C. Wood, Tribol. Int. 11, 211 (1978)CrossRefGoogle Scholar
  69. 69.
    S.C. Lim, M.F. Ashby, J.H. Brunton, Acta Metal. 35, 1343 (1987)CrossRefGoogle Scholar
  70. 70.
    M.O. Shabani, A. Mazahery, J. Mater. Sci. 46, 6700 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Anthoula Poulia
    • 1
    Email author
  • Emmanuel Georgatis
    • 1
  • Alexander Karantzalis
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations