Metals and Materials International

, Volume 25, Issue 5, pp 1170–1181 | Cite as

Compressive Deformation Behavior of AZ31Mg Alloy Containing {10–12} Extension Twins at Different Temperature

  • Hua ZhangEmail author
  • Xiaoqing Bai
  • Minjian Hou
  • Lifei WangEmail author
  • Qiang Zhang
  • Jianfeng Fan
  • Weiguo Li
  • Hongbiao Dong
  • Bingshe Xu


Influence of pre-introducing {10–12} extension twins on compressive deformation behavior of AZ31Mg alloy at different temperature was investigated. The compression tests were conducted along the normal direction of AZ31Mg alloy at room temperature, 100 °C, 200 °C and 300 °C with a strain rate of 1 × 10−3 s−1. The results indicated that the pre-introducing {10–12} extension twins strongly affected the yield strength, the peak strength and the strain hardening rate at middle-low temperature (≤ 200 °C). The twinned samples containing pre-introducing {10–12} extension twins exhibited smaller yield strength and larger peak strength than the as-received samples without {10–12} extension twins at temperature ≤ 200 °C. For the as-received samples, the strain hardening rate decreased gradually at different temperature. While for the twinned samples, the strain hardening behavior exhibited three distinct stages at temperature ≤ 200 °C. When compressing at 300 °C, the as-received and twinned samples exhibited similar compression flow curves and strain hardening rate curves. The continuous dynamic recrystallization (CDRX) was the main dynamic recrystallization (DRX) mechanism in the as-received sample when compressing at 200 °C. The twin assisted DRX besides CDRX was also initiated in the twinned sample when compressing at 200 °C. While the DRX mechanism was transformed into the discontinuous dynamic recrystallization (DDRX) in both the as-received and twinned samples when compressing at 300 °C.


AZ31Mg alloy {10–12} Extension twins Compressive deformation behavior Microstructure DRX 



The authors thank the National Natural Science Foundation of China (U1810122, 51504162, U1710118, 51704209 and 51601123), the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (2018), the Natural Science Foundation of Shanxi Province (2015011033, 2015021073, 2016021063 and 201801D221139), the Shanxi Province Fundamental Resources Platform of Science and Technology (201605D121030) and the Scientific and Technological Innovation Programs for Excellent Researchers in Shanxi Province (201605D211015) for their financial supports.


  1. 1.
    S.H. Jeong, Y.J. Kim, K.H. Kong, T.H. Cho, Y.K. Kim, H.K. Lim, W.T. Kim, D.H. Kim, Met. Mater. Int. 24, 391 (2018)CrossRefGoogle Scholar
  2. 2.
    C.Y. Su, D.J. Li, A.A. Luo, T. Ying, X.Q. Zeng, J. Alloys Compd. 747, 431 (2018)CrossRefGoogle Scholar
  3. 3.
    J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Mater. Sci. Eng. A 355, 68 (2003)CrossRefGoogle Scholar
  4. 4.
    R.E. Reed-Hill, W.D. Robertson, Acta Metall. 5, 728 (1957)CrossRefGoogle Scholar
  5. 5.
    X. Zhou, Q. Liu, R.R. Liu, H.T. Zhou, Met. Mater. Int. 24, 1359 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Vinogradov, V.N. Serebryany, S.V. Dobatkin, Adv. Eng. Mater. 20, 1700785 (2018)CrossRefGoogle Scholar
  7. 7.
    M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007)CrossRefGoogle Scholar
  8. 8.
    M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007)CrossRefGoogle Scholar
  9. 9.
    R.E. Reed-Hill, The Inhomogeneity of Plastic Deformation (ASM International, Materials Park, 1999)Google Scholar
  10. 10.
    J. Koike, Metall. Mater. Trans. A 36, 1689 (2005)CrossRefGoogle Scholar
  11. 11.
    B.C. Wonsiewicz, W.A. Backofen, Trans. Metall. Soc. AIME 239, 1422 (1967)Google Scholar
  12. 12.
    W.L. Cheng, L.F. Wang, H. Zhang, X.Q. Cao, J. Mater. Process. Tech. 254, 302 (2018)CrossRefGoogle Scholar
  13. 13.
    H.H. Yu, Y.C. Xin, Y. Cheng, B. Guan, M.Y. Wang, Q. Liu, Mater. Sci. Eng. A 700, 695 (2017)CrossRefGoogle Scholar
  14. 14.
    H.C. Chen, T.M. Liu, D.W. Hou, D.F. Shi, J. Alloys Compd. 680, 191 (2016)CrossRefGoogle Scholar
  15. 15.
    W.J. He, Q.H. Zeng, H.H. Yu, Y.C. Xin, B.F. Luan, Q. Liu, Mater. Sci. Eng. A 655, 1 (2016)CrossRefGoogle Scholar
  16. 16.
    S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 578, 271 (2013)CrossRefGoogle Scholar
  17. 17.
    S.H. Choi, D.H. Kim, H. Lee, B.S. Seong, K. Piao, R.H. Wagoner, Mater. Sci. Eng. A 526, 38 (2009)CrossRefGoogle Scholar
  18. 18.
    X.S. Xia, K. Zhang, X.G. Li, M.L. Ma, Y.J. Li, Mater. Des. 44, 521 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, B.Q. Chen, C.P. Liu, Mater. Sci. Eng. A 612, 253 (2014)CrossRefGoogle Scholar
  20. 20.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456, 52 (2007)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, H.B. Dong, J. Alloys Compd. 615, 687 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Li, P. Yang, L.N. Wang, L. Meng, F. Cui, Mater. Sci. Eng. A 517, 160 (2009)CrossRefGoogle Scholar
  23. 23.
    T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411 (2008)CrossRefGoogle Scholar
  24. 24.
    B. Song, R. Xin, G. Chen, X. Zhang, Q. Liu, Scr. Mater. 66, 1061 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Xin, M. Wang, Z. Zeng, G. Huang, Q. Liu, Scr. Mater. 64, 986 (2011)CrossRefGoogle Scholar
  26. 26.
    P. Yang, Y. Yu, L. Chen, W. Mao, Scr. Mater. 50, 1163 (2004)CrossRefGoogle Scholar
  27. 27.
    I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, I. Hurtadoa, Acta Mater. 58, 2988 (2010)CrossRefGoogle Scholar
  28. 28.
    M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093 (2004)CrossRefGoogle Scholar
  29. 29.
    A. Chapuis, J.H. Driver, Acta Mater. 59, 1986 (2011)CrossRefGoogle Scholar
  30. 30.
    B.S. Wang, R.L. Xin, G.J. Huang, Q. Liu, Mater. Sci. Eng. A 534, 588 (2012)CrossRefGoogle Scholar
  31. 31.
    G. Wan, B. Wu, Y.D. Zhang, G.Y. Sha, C. Esling, Mater. Sci. Eng. A 527, 2915 (2010)CrossRefGoogle Scholar
  32. 32.
    S.H. Choi, J.K. Kim, B.J. Kim, Y.B. Park, Mater. Sci. Eng. A 488, 458 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Jiang, A. Godfrey, W. Liu, Q. Liu, Mater. Sci. Eng. A 483–484, 576 (2008)CrossRefGoogle Scholar
  35. 35.
    M.R. Barnett, J. Light Met. 1, 167 (2001)CrossRefGoogle Scholar
  36. 36.
    S.X. Ding, W.T. Lee, C.P. Chang, L.W. Chang, P.W. Kao, Scr. Mater. 59, 1006 (2009)CrossRefGoogle Scholar
  37. 37.
    J.J. He, T.M. Liu, S. Xu, Y. Zhang, Mater. Sci. Eng. A 579, 1 (2013)CrossRefGoogle Scholar
  38. 38.
    J.A.D. Valle, M.T. Perez-Prado, O.A. Ruano, Metall. Mater. Trans. A 36, 1427 (2005)CrossRefGoogle Scholar
  39. 39.
    S.R. Agnew, O. Duygulu, Int. J. Plast 21, 1161 (2005)CrossRefGoogle Scholar
  40. 40.
    S.S. Vagarali, T.G. Langdon, Acta Metall. 29, 1969 (1981)CrossRefGoogle Scholar
  41. 41.
    M.R. Barnett, Metall. Mater. Trans. A 34, 1799 (2003)CrossRefGoogle Scholar
  42. 42.
    L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet, Acta Mater. 55, 3899 (2007)CrossRefGoogle Scholar
  43. 43.
    L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Scr. Mater. 54, 771 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 58, 6230 (2010)CrossRefGoogle Scholar
  45. 45.
    H. Yoshinaga, R. Horiuchï, Trans. Jpn. Inst. Met. 5, 14 (1963)CrossRefGoogle Scholar
  46. 46.
    M.J. Hou, H. Zhang, J.F. Fan, Q. Zhang, L.F. Wang, H.B. Dong, B.S. Xu, J. Alloys Comp. 741, 514 (2018)CrossRefGoogle Scholar
  47. 47.
    C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012)CrossRefGoogle Scholar
  48. 48.
    S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A 527, 52 (2009)CrossRefGoogle Scholar
  49. 49.
    S.W. Xu, S. Kamado, T. Honma, Scr. Mater. 63, 293 (2010)CrossRefGoogle Scholar
  50. 50.
    Q. Ma, B. Li, E.B. Marin, S.J. Horstemeyer, Scr. Mater. 65, 823 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina
  4. 4.Engineering Training CenterTaiyuan University of TechnologyTaiyuanChina
  5. 5.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations