Metals and Materials International

, Volume 25, Issue 5, pp 1227–1234 | Cite as

Elastic Energy Fraction as the Phenomenological Connection Between Electrical, Mechanical and Thermal Properties of the Al–(Nb, Mo, Ta, W) Amorphous Thin Films

  • Tihomir CarEmail author
  • Krešimir Salamon
  • Nikola Radić
  • Jovica Ivkov


Some of mechanical, electrical, and thermal properties of the Al–(Nb, Mo, Ta, W) binary thin films which are important for the stability and usability of the amorphous alloys were examined. Samples were prepared by magnetron deposition technique in wide range of composition onto various substrates held at room temperature. Different experimental techniques were used for the characterization of samples. The results of structural relaxation and crystallization measurements under isochronal conditions are compared with the results of measurements of micro/nano hardness and strain in the films. From the micro/nano hardness measurement, the elastic deformation energy fraction is calculated. The elastic deformation energy fraction is correlated with the various results obtained from electrical resistivity measurements under isochronal conditions. Particular emphasis was placed on the Al–Mo amorphous alloys. It turns out that elastic deformation energy fraction becomes important indicator and phenomenological correlation parameter between various physical properties of examined films.


Thin films Elastic energy Amorphous alloys Hardness Stress Resistivity Relaxation Crystallization 



In memory of a dear colleague Jovica.


  1. 1.
    H. Beck, H.-J. Güntherodt (eds.), Glassy Metals III, Topics in Applied Physics, vol. 72 (Springer, Berlin, 1994)Google Scholar
  2. 2.
    T. Masumoto, K. Hashimoto (eds.), Rapidly Quenched and Metastable Materials, Part I (Elsevier Science, Tokyo, 1994)Google Scholar
  3. 3.
    N. Radić, T. Car, A. Tonejc, J. Ivkov, M. Stubičar, M. Metikoš-Huković, in Physics and Technology of Thin Films, ed. by A.Z. Moshfegh, H.V. Känel, S.C. Kashyap, M. Wuttig (World Scientific Publishing, Singapore, 2004), p. 101Google Scholar
  4. 4.
    U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge University Press, Cambridge, 2001). (Chapter 15)CrossRefGoogle Scholar
  5. 5.
    L.V. Meisel, P.J. Cote, Acta Metall. 31, 1053 (1983)CrossRefGoogle Scholar
  6. 6.
    J. Ivkov, N. Radić, A. Tonejc, T. Car, J. Non-Cryst, Solids 319, 319 (2003)Google Scholar
  7. 7.
    T. Car, N. Radić, J. Ivkov, E. Babić, A. Tonejc, Appl. Phys. A 68, 69 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Ivkov, K. Salamon, N. Radić, M. Sorić, J. Alloys Compd. 646, 1109 (2015)CrossRefGoogle Scholar
  9. 9.
    E. Mittemeijer, J. Mater. Sci. 27, 397 (1992)CrossRefGoogle Scholar
  10. 10.
    A. Ben Abdellah, B. Grosdidier, S.M. Osman, S.M.M. Rahman, M. Mayoufi, J. Ataati, J.G. Gasser, J. Alloys Compd. 658, 1010 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Lattner, M. Seifert, T. Gemming, S. Heicke, S.B. Menzel, J. Vac. Sci. Technol. A 35, 061603 (2017)CrossRefGoogle Scholar
  12. 12.
    Q. Li et al., Adv. Mater. 30, 1704629 (2018)CrossRefGoogle Scholar
  13. 13.
    Z.W. Qi, B.Q. Cong, B.J. Qi, H.Y. Sun, G. Zhao, J.L. Ding, J. Mater. Process. Technol. 255, 347 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Rakhmonov, G. Timelli, F. Bonollo, Adv. Eng. Mater. 18, 1096 (2016)CrossRefGoogle Scholar
  15. 15.
    V. Moraes, H. Bolvardi, S. Kolozsvari, H. Riedl, P.H. Mayrhofer, Int. J. Refract. Metals Hard Mater. 71, 320 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Mokhtar, M.Z.M. Talib, E.H. Majlan, S.M. Tasirin, W.M.F.M. Ramli, W.R.W. Daud, J. Sahari, J. Ind. Eng. Chem. 32, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Esquivel, H.A. Murdoch, K.A. Darling, R.K. Gupta, Mater. Res. Lett. 6, 79 (2018)CrossRefGoogle Scholar
  18. 18.
    C. Hahn, M. Hans, C. Hein, A. Dennstedt, F. Mucklich, P. Rettberg, C.E. Hellweg, L.I. Leichert, C. Rensing, R. Moeller, Biometals 31, 759 (2018)CrossRefGoogle Scholar
  19. 19.
    T. Car, N. Radić, J. Ivkov, A. Tonejc, Appl. Phys. A 80, 1087 (2005)CrossRefGoogle Scholar
  20. 20.
    T. Car, N. Radić, P. Panjan, M. Čekada, A. Tonejc, Thin Solid Films 517, 4605 (2009)CrossRefGoogle Scholar
  21. 21.
    T. Car, N. Radić, M. Čekada, P. Panjan, A. Tonejc, Strojarstvo 53, 429 (2011)Google Scholar
  22. 22.
    T. Car, J. Ivkov, M. Jerčinović, N. Radić, Vacuum 98, 75 (2013)CrossRefGoogle Scholar
  23. 23.
    N. Radić, B. Gržeta, D. Gracin, T. Car, Thin Solid Films 228, 225 (1993)CrossRefGoogle Scholar
  24. 24.
    R. Ristić, E. Babić, M. Stubičar, A. Kuršumović, J.R. Cooper, I.A. Figueroa, I.A. Davis, I. Todd, L.K. Varga, I. Bakonyi, J. Non-Cryst, Solids 357, 2949 (2011)Google Scholar
  25. 25.
    W.P. Huhn, M. Widom, A.M. Cheung, G.J. Shifet, S.J. Poon, J. Lewandowski, Phys. Rev. B 89, 104103 (2014)CrossRefGoogle Scholar
  26. 26.
    D. Chicot, E. Bemporad, G. Galtieri, F. Roudet, M. Alvisi, J. Lesage, Thin Solid Films 516, 1964 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Schwarzer, Thin Solid Films 494, 168 (2006)CrossRefGoogle Scholar
  28. 28.
    G. Scott, in Amorphous Metallic Alloys, ed. by F.E. Luborsky (Butterworths, London, 1983)Google Scholar
  29. 29.
    J.H. Mooij, Phys. Status Solidi A 17, 521 (1973)CrossRefGoogle Scholar
  30. 30.
    W. Hofstetter, H. Sassik, R. Grossinger, R. Trausmuth, G. Vertesy, L.F. Kiss, Mater. Sci. Eng. A 213, 226 (1997)Google Scholar
  31. 31.
    S. Venkataraman, H. Hermann, D.J. Sordelet, J. Eckert, J. Appl. Phys. 104, 6107 (2008)CrossRefGoogle Scholar
  32. 32.
    A. Pratap, T.L. Shanker Rao, K.N. Lad, H.D. Dhurandhar, J. Non-Cryst. Solids 353, 2346 (2007)CrossRefGoogle Scholar
  33. 33.
    O. Haruyama, N. Asahi, J. Mater. Sci. 27, 5281 (1992)CrossRefGoogle Scholar
  34. 34.
    E. Morales-Sanchez, E.F. Prokhorov, J. Gonzalez-Hernandez, A. Mendoza-Galvan, Thin Solid Films 471, 243 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Bass, W.P. Pratt Jr., P.A. Scroeder, Rev. Mod. Phys. 62, 645 (1990)CrossRefGoogle Scholar
  36. 36.
    P.L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge University Press, Cambridge, 2003), p. 164Google Scholar
  37. 37.
    J.M. Ziman, Electrons and Phonons (Clarendon, Oxford, 2001)CrossRefGoogle Scholar
  38. 38.
    W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939)Google Scholar
  39. 39.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939)CrossRefGoogle Scholar
  40. 40.
    M. Avrami, J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
  41. 41.
    M. Avrami, J. Chem. Phys. 9, 177 (1941)CrossRefGoogle Scholar
  42. 42.
    A.N. Kolmogorov, Izv. Akad. Nauk SSSR Ser. Fiz. 3, 355 (1937)Google Scholar
  43. 43.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  44. 44.
    K.H.J. Buschow, N.M. Beekmans, Solid State Commun. 35, 233 (1980)CrossRefGoogle Scholar
  45. 45.
    D. Wang, Y. Liu, Y. Han, Y. Zhang, Z. Gao, Appl. Phys. A 92, 703 (2008)CrossRefGoogle Scholar
  46. 46.
    T. Ozawa, Polymer 12, 150 (1971)CrossRefGoogle Scholar
  47. 47.
    S.R. Elliot, Physics of Amorphous Materials (Longman Group Limited, Harlow, 1984)Google Scholar
  48. 48.
    A. Leyland, A. Matthews, Wear 246, 1 (2000)CrossRefGoogle Scholar
  49. 49.
    Y.T. Peia, D. Galvana, J.T.M. De Hossona, A. Cavaleiro, Surf. Coat. Technol. 198, 44 (2005)CrossRefGoogle Scholar
  50. 50.
    S.V. Madge, A. Caron, R. Gralla, G. Wilde, S.K. Mishra, Intermetallics 47, 6 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Tihomir Car
    • 1
    Email author
  • Krešimir Salamon
    • 1
  • Nikola Radić
    • 1
  • Jovica Ivkov
    • 2
  1. 1.Division of Materials ScienceRudjer Bošković InstituteZagrebCroatia
  2. 2.Institute of PhysicsZagrebCroatia

Personalised recommendations