Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1161–1169 | Cite as

Relationships Between Stretch-Flangeability and Microstructure-Mechanical Properties in Ultra-High-Strength Dual-Phase Steels

  • Jae Ik Yoon
  • Jaimyun Jung
  • Hak Hyeon Lee
  • Jin You Kim
  • Hyoung Seop KimEmail author
Article
  • 124 Downloads

Abstract

To clarify the direction of microstructure design for improving stretch-flangeability, relationships of stretch-flangeability to microstructure and mechanical properties of ultra-high-strength dual-phase (DP) steels were investigated. Microstructure of relatively simple ferrite-martensite DP steels was modified by intercritical annealing, then the effects of microstructure modification on stretch-flangeability, tensile properties, and fracture resistance of the DP steels were systematically quantified. The hole-expansion ratio (HER) increased linearly with an increase the apparent fracture initiation energy, but was not significantly correlated with any individual microstructural properties of DP steels, which have been reported to correlate with HER (e.g., the fraction of martensite, the carbon content of martensite, or the hardness difference between ferrite and martensite). To increase the stretch-flangeability of an ultra-high-strength DP steels, its microstructure should be designed to increase its fracture toughness (i.e., microstructure with low mechanical heterogeneity).

Keywords

Martensite fraction Formability Hole-expansion test Apparent fracture toughness Tensile properties 

Notes

Acknowledgements

This study was supported by Brain Korea 21 PLUS project for Center for Creative Industrial Materials (F16SN25D1706). Also, this work was supported by POSCO (2017Y054).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. 1.
    M. Wendler, C. Ullrich, M. Hauser, L. Krüger, O. Volkova, A. Weiß, J. Mola, Acta Mater. 133, 346 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Gao, B. An, H. Zhang, H. Guo, X. Gui, B. Bai, Mater. Sci. Eng., A 702, 104 (2017)CrossRefGoogle Scholar
  3. 3.
    W.W. Sun, Y.X. Wu, S.C. Yang, C.R. Hutchinson, Scripta Mater. 146, 60 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Liu, Z. Xiong, H. Guo, C. Shang, R.D.K. Misra, Acta Mater. 124, 159 (2017)CrossRefGoogle Scholar
  5. 5.
    A.G. Kalashami, A. Kermanpur, A. Najafizadeh, Y. Mazaheri, Mater. Sci. Eng., A 658, 355 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.C. Li, H. Ding, Z.H. Cai, Mater. Sci. Eng., A 639, 559 (2015)CrossRefGoogle Scholar
  7. 7.
    O. Bouaziz, H. Zurob, M. Huang, Steel Res. Int. 84, 937 (2013)Google Scholar
  8. 8.
    J.-H. Lee, S.-J. Park, J. Moon, J.-Y. Kang, J.-Y. Park, T.-H. Lee, K.M. Cho, Korean J. Met. Mater. 55, 363 (2017)CrossRefGoogle Scholar
  9. 9.
    J.Y. Park, S.-J. Park, J.-H. Lee, J. Moon, T.-H. Lee, K.J. Jeong, H.N. Han, J.-H. Shin, Korean J. Met. Mater. 55, 825 (2017)Google Scholar
  10. 10.
    S. Keeler, M. Kimchi, Advanced High-Strength Steels Application Guidelines V5.0. WorldAutoSteel (2017)Google Scholar
  11. 11.
    J.I. Yoon, J. Jung, S.-H. Joo, T.J. Song, K.-G. Chin, M.H. Seo, S.-J. Kim, S. Lee, H.S. Kim, Mater. Lett. 180, 322 (2016)CrossRefGoogle Scholar
  12. 12.
    J.I. Yoon, J. Jung, J.G. Kim, S.S. Sohn, S. Lee, H.S. Kim, J. Mater. Sci. 52, 7808 (2017)CrossRefGoogle Scholar
  13. 13.
    J.I. Yoon, J. Jung, J.H. Ryu, K. Lee, H.S. Kim, Exp. Mech. 57, 1349 (2017)CrossRefGoogle Scholar
  14. 14.
    J.I. Yoon, J. Jung, H.H. Lee, G.-S. Kim, H.S. Kim, Met. Mater. Int. 22, 1009 (2016)CrossRefGoogle Scholar
  15. 15.
    J.G. Kim, J.I. Yoon, S.M. Baek, M.H. Seo, K.-G. Chin, S. Lee, H.S. Kim, J. Mater. Process. Technol. 258, 220 (2018)CrossRefGoogle Scholar
  16. 16.
    G. Jha, S. Das, A. Lodh, A. Haldar, Mater. Sci. Eng., A 552, 457 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, ISIJ Int. 44, 603 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Lee, S.-J. Lee, B.C. De Cooman, Mater. Sci. Eng., A 536, 231 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka, Y. Tanaka, J. Alloy. Compd. 577, S661 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Lee, M. Lee, H. Do, S. Kim, N. Kang, Korean J. Met. Mater. 52, 113 (2014)CrossRefGoogle Scholar
  21. 21.
    J.S. Lee, D. Lee, M. Lee, C. Park, Y.D. Park, N. Kang, Steel Res. Int. 87, 1 (2017)Google Scholar
  22. 22.
    M. Madrid, C.J. Van Tyne, S. Sadagopan, E.J. Pavlina, J. Hu, K.D. Clarke, JOM US 70, 918 (2018)CrossRefGoogle Scholar
  23. 23.
    O.R. Terrazas, K.O. Findley, C.J. Van Tyne, ISIJ Int. 57, 937 (2017)CrossRefGoogle Scholar
  24. 24.
    I. Pushkareva, S. Allain, C. Scott, A. Redjaïmia, A. Moulin, ISIJ Int. 55, 2237 (2015)CrossRefGoogle Scholar
  25. 25.
    ISO 16630, Metallic materials—method of hole expanding test, http://www.iso.org (2009)
  26. 26.
    D. Casellas, A. Lara, D. Frómeta, D. Gutiérrez, S. Molas, L. Pérez, J. Rehrl, C. Suppan, Metall. Mater. Trans. A 48, 86 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Trzaska, L.A. Dobrzański, J. Mater. Process. Technol. 192–193, 504 (2007)CrossRefGoogle Scholar
  28. 28.
    ASTM E8, Standard test methods for tension testing of metallic materials. www.astm.org (2015)
  29. 29.
    J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)CrossRefGoogle Scholar
  30. 30.
    O. Akourri, M. Louah, A. Kifani, G. Gilgert, G. Pluvinage, Eng. Fract. Mech. 65, 491 (2000)CrossRefGoogle Scholar
  31. 31.
    J.H. Kim, D.H. Kim, S.I. Moon, Mater. Sci. Eng., A 387–389, 381 (2004)CrossRefGoogle Scholar
  32. 32.
    S.V. Kamat, N.E. Prasad, Scripta Metall. Mater. 25, 1519 (1991)CrossRefGoogle Scholar
  33. 33.
    S.K. Paul, J. Mater. Eng. Perform. 23, 3610 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Chatterjee, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 606 (2007)CrossRefGoogle Scholar
  35. 35.
    X. Chen, H. Jiang, Z. Cui, C. Lian, C. Lu, Proced. Eng. 81, 718 (2014)CrossRefGoogle Scholar
  36. 36.
    J.I. Yoon, J. Jung, H.H. Lee, H.S. Kim, JOM US 70, 912 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Sarwar, R. Priestner, J. Mater. Sci. 31, 2091 (1996)CrossRefGoogle Scholar
  38. 38.
    A.F. Szewczyk, J. Gurland, Metall. Trans. A 13, 1821 (1982)CrossRefGoogle Scholar
  39. 39.
    T. Matsuno, D. Maeda, H. Shutoh, A. Uenishi, M. Suehiro, ISIJ Int. 54, 938 (2014)CrossRefGoogle Scholar
  40. 40.
    G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, D.S. Wilkinson, Mater. Sci. Eng., A 516, 7 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Mater. Sci. Technol. 28, 1092 (2012)CrossRefGoogle Scholar
  42. 42.
    K. Perzyński, Ł. Madej, J. Wang, R. Kuziak, P.D. Hodgson, Metall. Mater. Trans. A 45, 5852 (2014)CrossRefGoogle Scholar
  43. 43.
    Y. Hou, T. Sapanathan, A. Dumon, P. Culière, M. Rachik, Comput. Mater. Sci. 123, 188 (2016)CrossRefGoogle Scholar
  44. 44.
    A. Fillafer, C. Krempaszky, E. Werner, Mater. Sci. Eng., A 614, 180 (2014)CrossRefGoogle Scholar
  45. 45.
    C. Krempaszky, P. Larour, J. Freudenthaler, E. Werner, in IDDRG 2014 Conference, p. 204 (2014)Google Scholar
  46. 46.
    C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Acta Mater. 81, 386 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A 30, 1193 (1999)CrossRefGoogle Scholar
  48. 48.
    A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A 32, 2207 (2001)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Jae Ik Yoon
    • 1
  • Jaimyun Jung
    • 1
  • Hak Hyeon Lee
    • 1
  • Jin You Kim
    • 2
  • Hyoung Seop Kim
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Pohang Research Laboratory Steel Products Research Group 1POSCOPohangRepublic of Korea
  3. 3.Center for High Entropy AlloysPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  4. 4.Graduate Institute of Ferrous TechnologyPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations