Advertisement

Metals and Materials International

, Volume 25, Issue 5, pp 1109–1134 | Cite as

Important Factors on the Failure of Pipeline Steels with Focus on Hydrogen Induced Cracks and Improvement of Their Resistance: Review Paper

  • M. A. Mohtadi-BonabEmail author
  • H. Ghesmati-Kucheki
Article

Abstract

Currently, thousands of kilometers of pipeline steels are transferring hydrocarbon fluids such as oil and natural gas in the world. Due to the fact that these pipes transport corrosive and high-pressure fluids from harsh environments, they are damaged and eventually degraded. Previous studies showed that sulphide stress cracking, hydrogen induced cracking (HIC) and stress corrosion cracking are the main destructive factors in these types of pipes. This paper focused on the HIC related failure in pipeline steel, since the role of texture and grain boundary character has not been completely recognized. Moreover, if pipeline damage is occurred by hydrogen cracks, besides the environmental pollutions, it will cost a lot to repair or replace the damaged pipeline steels. In this research, the factors influencing the initiation and propagation of the HIC cracks, such as hydrogen traps, inclusions, precipitates, microstructure and texture of steel have been investigated. Also, the existing solutions for improving the steel resistance to the HIC have been investigated based on the control of micro-alloy elements, texture and grain boundary engineering. For instance, some special dominant texture components and coincidence site lattice boundaries decrease the HIC susceptibility by providing the resistant path for crack propagation.

Keywords

Inclusion Crystallographic texture Electron backscatter diffraction Energy dispersive spectroscopy Kernel average misorientation 

Notes

References

  1. 1.
    L. Duprez, E. Leunis, O.E. Güngör, S. Claessens, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, 2nd edn. (Woodhead Publishing, Sawston, 2012), pp. 562–591Google Scholar
  2. 2.
    K.A. Esaklul, Trends in Oil and Gas Corrosion Research and Technologies, 1st edn. (Woodhead Publishing, Sawston, 2017), pp. 315–340Google Scholar
  3. 3.
    S.K. Sharma, S. Maheshwari, J. Nat. Gas Sci. Eng. 38, 203 (2017)Google Scholar
  4. 4.
    D.G. Westlake, Trans. Am. Soc. Met. 62, 1000 (1969)Google Scholar
  5. 5.
    S.P. Lynch, Stress Corrosion Cracking, 1st edn. (Woodhead Publishing, Sawston, 2011), pp. 90–130Google Scholar
  6. 6.
    NACE MR-0175, in Sulphide Stress Cracking Resistant Metallic Materials for Oilfield Equipment (NACE International, Houston)Google Scholar
  7. 7.
    R.A. King, Trends in Oil and Gas Corrosion Research and Technologies, 1st edn. (Woodhead Publishing, Sawston, 2017), pp. 271–294Google Scholar
  8. 8.
    R.D. Kane, M.S. Cayard, Roles of H2S in the behaviour of engineering alloys: a review of literature and experience (Paper 274), in Corrosion (NACE International, 1998)Google Scholar
  9. 9.
    T. Kaneko, M. Takeyama, M. Nakanishi, Y. Sumitomo, A. Ikeda, in NACE Middle East Corrosion Conference (Huston, USA, April, 1979)Google Scholar
  10. 10.
    B. Beidokhti, A. Dolati, A.H. Koukabi, Mat. Sci. Eng. A. 507, 167 (2009)Google Scholar
  11. 11.
    M.A. Mohtadi-Bonab, J.A. Szpunar, R. Basu, M. Eskandari, Int. J. Hydrog Energy 40, 1096 (2015)Google Scholar
  12. 12.
    T. Taira, Y. Kobayachi, N. Seki, K. Tsukada, M. Tanimura, H. Inagaki, Technol. Rep. NKK (Nippon Kokan), No. 67, 421 (1980)Google Scholar
  13. 13.
    F. Terazaki, A. Ikeda, S. Okamoto, M. Takeyam, Sumitomo Met. 30, 40 (1978)Google Scholar
  14. 14.
    E. Miyoshi, T. Tanaka, F. Terazaki, A. Ikeda, J. Eng. Ind. 98, 1221 (1976)Google Scholar
  15. 15.
    M. Elboujdini, Uhig’s Corrosion Handbook, 3rd edn. (Wiley, Hoboken, 2011), pp. 183–194Google Scholar
  16. 16.
    S.P. Lynch, Stress Corrosion Cracking, 1st edn. (Woodhead Publishing, Sawston, 2011), pp. 3–89Google Scholar
  17. 17.
    R.N. Parkins, Uhig’s Corrosion Handbook, 3rd edn. (Wiley, Hoboken, 2011), pp. 171–181Google Scholar
  18. 18.
    R.N. Parkins, W.K. Blanchard, B.S. Delanty, Corrosion 50, 394 (1994)Google Scholar
  19. 19.
    R.N. Parkins, C.M. Rangel, J. Yu, Met. Trans. A. 16, 1671 (1985)Google Scholar
  20. 20.
    J.R. Galvele, Corrosion 55, 723 (1999)Google Scholar
  21. 21.
    T. Magnin, A. Chambreuil, B. Bayle, Acta Mat. 44, 1457 (1996)Google Scholar
  22. 22.
    L.B. Pfeil, H.C.H. Carpenter, R. Soc. 760, 128 (1926)Google Scholar
  23. 23.
    C.D. Beachem, Metall. Trans. 3, 437 (1972)Google Scholar
  24. 24.
    C. Zapffe, C.E. Sims, Trans. Am. Inst. Min. Metall. Eng. 145, 225 (1941)Google Scholar
  25. 25.
    A.S. Tetelman, W.D. Robertson, Trans. Am. Inst. Min. Metall. Eng. 224, 775 (1962)Google Scholar
  26. 26.
    A. Traidia, M. Alfano, G. Lubineau, S. Duval, A. Sherik, Int. J. Hydrog. Energy 37, 16214 (2012)Google Scholar
  27. 27.
    M.A. Mohtadi-Bonab, PhD Thesis, Mechanism of failure by hydrogen-induced cracking in pipeline steels (University of Saskatchewan, 2015)Google Scholar
  28. 28.
    S.J. Kim, K.Y. Kim, J. Weld. Join. 32, 443 (2014)Google Scholar
  29. 29.
    M.A. Mohtadi-Bonab, J.A. Szpunar, M. Eskandari, Mater. Sci. Eng. A 620, 97 (2014)Google Scholar
  30. 30.
    A. Barnoush, Hydrogen Embrittlement (Saarland University, Saarbrücken, 2011)Google Scholar
  31. 31.
    T. Michler, J. Naumann, Int. J. Hydrog. Energy 35, 11373 (2010)Google Scholar
  32. 32.
    J. Völkl, G. Alefeld, Hydrogen Diffusion in Metals (Academic Press, New York, 1975), pp. 231–302Google Scholar
  33. 33.
    H.J. Christ, M. Decker, S. Zeitler, Metall. Mater. Trans. A 31, 1507 (2000)Google Scholar
  34. 34.
    NACE Standard TM-0284, Standard test method for evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking (2003)Google Scholar
  35. 35.
    W.A. Bonner, H.D. Burnham, I.J. Conradi, T. Skei, Proc. API 33, 255 (1953)Google Scholar
  36. 36.
    A. Ikeda, Y. Morita, T. Tanaka, M. Takeyama, in Proceedings of Second International Conference on Hydrogen in Metals (Paris, France, 1977)Google Scholar
  37. 37.
    W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Corros. Sci. 50, 3336 (2008)Google Scholar
  38. 38.
    H.E. Townsend Jr., Corros. 28, 39 (1972)Google Scholar
  39. 39.
    M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, Y.H. Li, Mater. Lett. 57, 141 (2002)Google Scholar
  40. 40.
    S.U. Koh, H.G. Jung, K.B. Kang, G.T. Park, K.Y. Kim, Corrosion 64, 574 (2008)Google Scholar
  41. 41.
    Z. Shen, Y.H. Li, Y.Y. Shan, K. Liu, K. Yang, Acta Metall. Sinica 44, 215 (2008)Google Scholar
  42. 42.
    S.S. Nayaka, R.D.K. Misra, J. Hartmann, F. Siciliano, J.M. Gray, Mater. Sci. Eng. A 494, 456 (2008)Google Scholar
  43. 43.
    S. Shanmugam, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 441, 215 (2006)Google Scholar
  44. 44.
    S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 478, 26 (2008)Google Scholar
  45. 45.
    G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim, Corros. Sci. 50, 1865 (2008)Google Scholar
  46. 46.
    E. Lunarska, Y. Ososkov, Y. Jagodzinsky, Int. J. Hydrog. Energy 22, 279 (1997)Google Scholar
  47. 47.
    X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. 22, 937 (2015)Google Scholar
  48. 48.
    K.D. Chang, J.L. Gu, H.S. Fang, Z.G. Yang, B.Z. Bai, W.Z. Zhang, Iron Steel Ins. Jpn. Int. 41, 1397 (2001)Google Scholar
  49. 49.
    J. Li, X. Gao, L. Du, Z. Liu, J. Mater. Sci. Technol. 33, 1504 (2017)Google Scholar
  50. 50.
    F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, X.G. Li, Mater. Sci. Eng. A 527, 6997 (2010)Google Scholar
  51. 51.
    K. Matsumoto, Y. Kobayashi, K. Ume, K. Murakami, K. Taira, K. Arikata, Natl. Assoc. Corros. Eng. 42, 337 (1986)Google Scholar
  52. 52.
    K. Banerjee, U.K. Chatterjee, Scripta Mater. 44, 213 (2001)Google Scholar
  53. 53.
    S. Lee, B.C. Kim, D.Y. Lee, Scripta Metall. 23, 995 (1989)Google Scholar
  54. 54.
    M.A. Arafin, J.A. Szpunar, Corros. Sci. 51, 119 (2009)Google Scholar
  55. 55.
    C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng, Int. J. Hydrog. Energy 34, 9879 (2009)Google Scholar
  56. 56.
    M.A. Mohtadi-Bonab, J.A. Szpunar, L. Collins, R. Stankiewich, Int. J. Hydrog. Energy 39, 6076 (2014)Google Scholar
  57. 57.
    R.A. Carneiro, R.C. Ratnapuli, V.F.C. Lins, Mater. Sci. Eng. A 357, 104 (2003)Google Scholar
  58. 58.
    M.A. Mohtadi-Bonab, J.A. Szpunar, S.S. Razavi-tousi, Eng. Fail. Anal. 33, 163 (2013)Google Scholar
  59. 59.
    D. Li, R.P. Gangloff, J.R. Scully, Metall. Mater. Trans. A 35, 849 (2004)Google Scholar
  60. 60.
    P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58, 206 (2010)Google Scholar
  61. 61.
    A. Turnbull, R.B. Hutchings, D.H. Ferriss, Mater. Sci. Eng. A 238, 317 (1997)Google Scholar
  62. 62.
    T. Zakroczymski, E. Owzcarek, Acta Mater. 50, 2701 (2002)Google Scholar
  63. 63.
    Y.D. Park, I.S. Maroef, A. Landau, D.L. Olson, Weld. J. 81, 27 (2002)Google Scholar
  64. 64.
    T. Ichikawa, R.B. McLellan, Acta Metall. 34, 1091 (1986)Google Scholar
  65. 65.
    Y. Iijima, K. Hirano, Bull. Jpn. Inst. Metal. 14, 559 (1975)Google Scholar
  66. 66.
    J. Philibert, Diffusion in Materials (Kluwer Academic Publisher, Dordrecht, 1990)Google Scholar
  67. 67.
    C.A. Wert, Hydrogen in Metals II Application-Oriented Properties (Springer, New York, 1978), pp. 305–330Google Scholar
  68. 68.
    N. Yazdipour, A.J. Haq, K. Muzaka, E.V. Pereloma, Comput. Mater. Sci. 56, 49 (2012)Google Scholar
  69. 69.
    G.J. Thomas, Trans. Metall. Soc. AIME 12, 77 (1980)Google Scholar
  70. 70.
    C. Paes de Oliveira, M. Aucouturier, P. Lacombe, Corrosion 36, 53 (1980)Google Scholar
  71. 71.
    G.M. Pressouyre, I.M. Bernstein, Metall. Trans. A 9, 1571 (1978)Google Scholar
  72. 72.
    J.Y. Lee, S.M. Lee, Surf. Coat. Technol. 28, 310 (1986)Google Scholar
  73. 73.
    H.B. Xue, Y.F. Cheng, Corros. Sci. 53, 1201 (2011)Google Scholar
  74. 74.
    M.A. Mohtadi-Bonab, J.A. Szpunar, S.S. Razavi-tousi, Int. J. Hydrog. Energy 38, 1381 (2013)Google Scholar
  75. 75.
    S. Louhenkilpi, Continuous Casting of Steel, Treatise Process Metall (Elsevier, Amsterdam, 2014), p. 373Google Scholar
  76. 76.
    A.S. Ghosh, Acad. Proc. Eng. Sci. 26, 24 (2001)Google Scholar
  77. 77.
    S.K. Yen, I.B. Huang, Mater. Chem. Phys. 80, 662 (2003)Google Scholar
  78. 78.
    M.A. Mohtadi-Bonab, M. Eskandari, J.A. Szpunar, J. Mater. Res. 14, 3390 (2016)Google Scholar
  79. 79.
    M.A. Mohtadi-Bonab, M. Eskandari, R. Karimdadashi, J.A. Szpunar, Met. Mater. Int. 23, 726 (2017)Google Scholar
  80. 80.
    T. Depover, O. Monbaliu, E. Wallaert, K. Verbeken, Int. J. Hydrog. Energy 40, 16977 (2015)Google Scholar
  81. 81.
    W. Qin, J.A. Szpunar, Philos. Mag. 97, 3296 (2017)Google Scholar
  82. 82.
    F.A. Nichols, Hydrogen Degradation of Ferrous Alloys (Cambridge University Press, Cambridge, 1986)Google Scholar
  83. 83.
    Y. Payandeh, M. Soltanieh, J. Iron Steel Res. Int. 14, 39 (2007)Google Scholar
  84. 84.
    C.F. Dong, X.G. Li, Z.Y. Liu, Y.R. Zhang, J. Alloys Compds. 484, 966 (2009)Google Scholar
  85. 85.
    G. Domizzi, G. Anteri, J. Ovejero-Garcia, Corros. Sci. 43, 325 (2001)Google Scholar
  86. 86.
    D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, Mater. Sci. Eng. A 551, 40 (2012)Google Scholar
  87. 87.
    M. Van Ende, PhD Thesis, Universite Catholique de Louvain, 2010Google Scholar
  88. 88.
    Z.S. Smialowska, E. Lunarska, Werkst. Korros. 32, 478 (1981)Google Scholar
  89. 89.
    T.Y. Jin, Z.Y. Liu, Y.F. Cheng, Int. J. Hydrog. Energy 35, 8014 (2010)Google Scholar
  90. 90.
    H.Y. Liou, R.I. Shieh, F.I. Wei, S.C. Wang, Corrosion 49, 389 (1993)Google Scholar
  91. 91.
    K. Shimogori, Y. Torii, K. Kitahata, Kobe Steel Eng. Rep. 34, 20 (1984)Google Scholar
  92. 92.
    H. Tamehiro, S. Matsuda, K. Yamamoto, N. Okumura, Trans. Iron Steel Ins. Jpn. 25, 982 (1985)Google Scholar
  93. 93.
    O.M.I. Todoshchenko, Y. Yagodzinskyy, T. Saukkonen, H. Hanninen, Metall. Mater. Trans. A 45, 4742 (2014)Google Scholar
  94. 94.
    M. Ichimura, Y. Sasajima, M. Imabayashi, Mater. Trans. 32, 1109 (1991)Google Scholar
  95. 95.
    K. Takasawa, Y. Wada, R. Ishigaki, R. Kayano, Mater. Trans. 51, 347 (2010)Google Scholar
  96. 96.
    I.M. Bernstein, A.W. Thompson, Resisting Hydrogen Embrittlement (Academic Press, New York, 1976)Google Scholar
  97. 97.
    E.O. Hall, Proc. Phys. Soc. 64, 747 (1951)Google Scholar
  98. 98.
    N.J. Petch, J. Iron Steel Inst. 25, 174 (1953)Google Scholar
  99. 99.
    A.J. Haq, K. Muzaka, D.P. Dunne, A. Caka, E.V. Pereloma, Int. J. Hydrog. Energy 38, 2544 (2013)Google Scholar
  100. 100.
    V. Venegas, F. Caleyo, J.L. Gonzalez, T. Baudin, J.M. Hallen, R. Penelle, Scr. Mater. 52, 147 (2005)Google Scholar
  101. 101.
    M. Masoumi, C.C. Silva, M. Beres, D.H. Ladino, H.F.G. de Abreu, Int. J. Hydrog. Energy 42, 1318 (2017)Google Scholar
  102. 102.
    V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-hernandez, J.M. Hallen, Corros. Sci. 53, 4204 (2011)Google Scholar
  103. 103.
    A.A. Saleh, D. Hejazi, A.A. Gazder, D.P. Dunne, E.V. Pereloma, Int. J. Hydrog. Energy 41, 12424 (2016)Google Scholar
  104. 104.
    V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, R. Penelle, Miner. Metal. Mater. Soc. ASM Int. 38, 1022 (2007)Google Scholar
  105. 105.
    M.A. Arafin, PhD Thesis, Mcgill University, 2010Google Scholar
  106. 106.
    M. Masoumi, C.C. Silva, H.F.G. de Abreu, Corros. Sci. 111, 121 (2016)Google Scholar
  107. 107.
    F. Caleyo, V. Venegas, J.M. Hallen, J.E. Araujo, T. Baudin, in ASME 6th International Biennial Pipeline Conference IPC2006 (Calgary AB, Canada, Paper IPC2006-10530, 2006)Google Scholar
  108. 108.
    M.A. Mohtadi-Bonab, M. Eskandari, J.A. Szpunar, Eng. Fail. Anal. 91, 172 (2018)Google Scholar
  109. 109.
    M. Masoumi, H.L.F. Coelho, S.S.M. Tavares, C.C. Silva, H.F.G. Abreu, J. Miner. Met. Mater. Soc. 69, 1368 (2017)Google Scholar
  110. 110.
    P. Toussaint, R. De Chatelet, NACE Corros. Conf. 9352, 1 (2009)Google Scholar
  111. 111.
    F. Huang, X.G. Li, J. Liu, Y.M. Qu, J. Jia, C.W. Du, J. Mater. Sci. 46, 715 (2011)Google Scholar
  112. 112.
    R.K. Dayal, H.J. Grabke, Mater. Corros. 38, 409 (1987)Google Scholar
  113. 113.
    X. Shi, W. Yan, W. Wang, Y. Shan, K. Yang, Mater. Des. 92, 300 (2016)Google Scholar
  114. 114.
    E. Ohaeri, U. Eduok, J.A. Szpunar, Int. J. Hydrog. Energy 43, 14584 (2018)Google Scholar
  115. 115.
    Z. Shirband, M.R. Shishesaz, Phase Trans. 84, 924 (2011)Google Scholar
  116. 116.
    K. Baba, D. Mizuno, K. Yasuda, H. Nakamichi, N. Ishikawa, Corrosion 72, 1107 (2016)Google Scholar
  117. 117.
    P. Ghosh, R.K. Ray, Ceram. Trans. 200, 151 (2008)Google Scholar
  118. 118.
    C. Capdevila, V. Amigo, F.G. Caballero, C. García de Andrés, M.D. Salvador, Mater. Trans. 51, 625 (2010)Google Scholar
  119. 119.
    C. Mendibide, T. Sourmail, Corros. Sci. 51, 2878 (2009)Google Scholar
  120. 120.
    J. Moon, S.J. Kim, C. Lee, Metal. Mater. Int. 19, 45 (2013)Google Scholar
  121. 121.
    J.G. Williams, Mater. Forum 31, 1 (2007)Google Scholar
  122. 122.
    T.E. Perez, H. Quintanilla, E. Rey, Corrosion 98, 1 (1998)Google Scholar
  123. 123.
    T. Schambron, A.W. Phillips, D.M. O’brien, J. Burg, E.V. Pereloma, C.C. Killmore, J.A. Williams, ISIJ Int. 49, 284 (2009)Google Scholar
  124. 124.
    S.Y. Han, S.Y. Shin, C.H. Seo, H. Lee, J. Bae, K. Kim, S. Lee, N.J. Kim, Metall. Mater. Trans. A 40, 1851 (2009)Google Scholar
  125. 125.
    Q. Sha, D. Li, Mater. Sci. Eng., A 585, 214 (2013)Google Scholar
  126. 126.
    J. Moon, C. Park, S.J. Kim, Met. Mater. Int. 18, 613 (2012)Google Scholar
  127. 127.
    Z. Shiqi, F. Endian, W. Jifang, J. Liu, H. Yunhua, L. Xiaogang, Corros. Sci. 139, 83 (2018)Google Scholar
  128. 128.
    D.L. Johnson, G. Krauss, J.K. Wu, K.P. Tang, Metall. Trans. A 18, 717 (1987)Google Scholar
  129. 129.
    W.Y. Choo, J. Young Lee, Metall. Trans. A 14, 1299 (1983)Google Scholar
  130. 130.
    Y.F. Cheng, Int. J. Hydrog. Energy 32, 1269 (2007)Google Scholar
  131. 131.
    A. Miyasaka, T. Yamaguchi Miyagawa, A. Nakamura, Corrosion 94, 83 (1994)Google Scholar
  132. 132.
    K. Masamura, Y. Takeuchi, K. Tamaki, T. Miyagawa, A. Nakamura, Corrosion 94, 84 (1994)Google Scholar
  133. 133.
    K. Tamaki, A. Nakamura, T. Miyagawa, T. Tamaki, M. Ogasawara, Corrosion 94, 85 (1994)Google Scholar
  134. 134.
    R. Mendoza, J. Huante, V. Camacho, O. Alvarez-Fregoso, J.A. Juarez-Islas, J. Mater. Eng. Perfor. 8, 549 (1999)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of BonabBonabIran

Personalised recommendations