Advertisement

Investigation of Weld Corrosion Effects on the Stress Behavior of a Welded Joint Pipe Using Numerical Simulations

  • Yong-Sang Kim
  • Jung-Gu KimEmail author
Article
  • 6 Downloads

Abstract

In this paper, the influence of weld corrosion on the mechanical behavior of a welded joint pipeline was investigated using corrosion and mechanical simulations simultaneously. In the corrosion simulation, the modeling results (i.e., the corrosion potential and current density) revealed that the welded joint is preferentially corroded and the corrosion rate is higher in the outside environment due to the severe corrosion factors. The increase in corrosion degradation according to the operation time increases the stress concentration on the welded joint, indicating that the failure risk of the welded joint is increased with increasing corrosion degradation. These results can be used to evaluate the lifetime of welded joints exposed to corrosion and suggest guidelines for the maintenance of structures.

Keywords

Low carbon steel Weld corrosion Numerical simulation Stress concentration Pipe 

Notes

Acknowledgements

This research was supported by the Korea District Heating Corporation (No. 0000000014524).

References

  1. 1.
    A. Wahid, D.L. Olson, D.K. Matlock, C.E. Cross, Corrosion of Weldments, Weldling, Brazing, and Soldering. ASM Handbook, vol. 6 (ASM International, Russell Township, 1993), pp. 1065–1069Google Scholar
  2. 2.
    P.P. Sarkar, P. Kumar, M.K. Manna, P.C. Chakraborti, Mater. Lett. 59, 2488 (2005)CrossRefGoogle Scholar
  3. 3.
    I. Ahamed, R. Prasad, M.A. Quraush, Corros. Sci. 52, 933 (2010)CrossRefGoogle Scholar
  4. 4.
    D.A. Jones, Principle and Prevention of Corrosion, 2nd edn. (Prentice Hall, New Jersey, 1996), pp. 50–64Google Scholar
  5. 5.
    D. McNeill, J. Brock, Heat Pip. Air Cond. 43, 107 (1971)Google Scholar
  6. 6.
    Annex A16. RCC-MR, Design and Construction Rules for Mechanical Components of FRB Nuclear Islands, 2nd edn. (AFCEN, Paris, 2002)Google Scholar
  7. 7.
    S. Murugan, S.K. Rail, P.V. Kumar, T. Jayakumar, B. Raj, M.S.C. Bose, Int. J. Pres. Vessel. Pip. 78, 307 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.-S. Kim, J.G. Kim, D.H. Choi, J.-Y. Lim, J.-G. Kim, Eng. Anal. Bound. Elem. 77, 36 (2017)CrossRefGoogle Scholar
  9. 9.
    Z. Lan, X. Wang, B. Hou, Z. Wang, J. Song, S. Chen, Eng. Anal. Bound. Elem. 36, 903 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Wang, A. Zhou, G. Fu, C.-Q. Li, D. Robert, Eng. Fail. Anal. 81, 254 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Ahammed, Int. J. Press. Vessel. Pip. 75, 321 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Cerit, K. Genel, S. Eksi, Eng. Fail. Anal. 16, 2467 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Kolios, S. Srikanth, K. Salonitis, Proc. CIRP 13, 230 (2014)CrossRefGoogle Scholar
  14. 14.
    W.H. Hartt, Corrosion 68, 1063 (2012)CrossRefGoogle Scholar
  15. 15.
    J.-H. Kim, Y.-S. Kim, J.-G. Kim, Ocean Eng. 115, 149 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Wan, C. Du, Z. Liu, D. Song, X. Li, Ocean Eng. 114, 216 (2016)CrossRefGoogle Scholar
  17. 17.
    E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Ohio, 2000), pp. 155–173Google Scholar
  18. 18.
    Y.-S. Kim, W.-C. Kim, J.-G. Kim, Corrosion 74, 112 (2018)CrossRefGoogle Scholar
  19. 19.
    I. Ahamad, R. Prasad, M.A. Quraishi, Corros. Sci. 52(1472), 1472 (2010)Google Scholar
  20. 20.
    H.H. Uhlig, R.W. Revie, Corrosion and Corrosion Control (Wiley, New York, 1985), p. 223Google Scholar
  21. 21.
    P. Doig, P.E.J. Flewitt, J. Electrochem. Soc. 126, 2057 (1979)CrossRefGoogle Scholar
  22. 22.
    C.T. Kwok, S.L. Fong, F.T. Cheng, H.C. Man, J. Mater. Process. Technol. 176, 168 (2006)CrossRefGoogle Scholar
  23. 23.
    K. Fushimi, A. Naganuma, K. Azumi, Y. Kawahara, Corros. Sci. 50, 903 (2008)CrossRefGoogle Scholar
  24. 24.
    F.P. Brennan, P. Peleties, A.K. Hellier, Int. J. Fatigue 22, 573 (2000)CrossRefGoogle Scholar
  25. 25.
    P. Dong, Int. J. Fatigue 23, 865 (2001)CrossRefGoogle Scholar
  26. 26.
    W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd edn. (Wiley, New Jersey, 2008), p. 90Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringKorea Institute of Nuclear SafetyDaejeonRepublic of Korea
  2. 2.School of Advanced Materials EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations