Advertisement

Hot Deformation Behavior and Dynamic Recrystallization Characteristics of 12Cr Ultra-Super-Critical Rotor Steel

  • Y. Xu
  • J. S. LiuEmail author
  • Y. X. Jiao
Article
  • 5 Downloads

Abstract

In this paper, the constitutive model and dynamic recrystallization characteristics of 12Cr ultra-super-critical rotor steel were investigated quantitatively during hot deformation. A series of axisymmetric hot compression tests at temperatures from 900 to 1200 °C under strain rates of 0.001–1 s−1 were conducted on a Gleeble−1500D thermal simulator. Based on the experimental true stress–strain curves varying with temperature and strain rates, a complete constitutive model was established and all material parameters in the model could be expressed as a function of strain using a fifth order polynomial fit. The proposed model was verified so as to have the capability of accurately predicting the flow behaviour with an average absolute relative error of < 2.82%. Meanwhile, after hot deformation the microstructure was observed via electron backscatter diffraction technology. Then, the dependence of the characteristic parameters on the Zener–Hollomon parameter were confirmed. Furthermore, the kinetics equation of dynamic recrystallization was obtained, which included the flow stress calculated based on the evolution equation of the dislocation density during the work hardening-dynamic recovery stage. The result indicated that the predicted values for dynamic recrystallization volume fraction and flow stress were in line with the experimental values.

Keywords

12Cr rotor steel Hot deformation test Constitutive model Characteristic parameters Recrystallization kinetics 

Notes

Acknowledgements

This research was funded by National Natural Science Foundation of China (51775361).

References

  1. 1.
    P.N. Ernst, P.J. Uggowitzer, M.O. Speidel, J. Mater. Sci. Lett. 5, 835–839 (1986)CrossRefGoogle Scholar
  2. 2.
    M.I. Isik, A. Kostka, V.A. Yardley, Acta Mater. 90, 94–104 (2015)CrossRefGoogle Scholar
  3. 3.
    X.G. Tao, L.Z. Han, J.F. Gu, Mater. Sci. Eng. A 618, 189–204 (2014)CrossRefGoogle Scholar
  4. 4.
    K.H. Lee, S.M. Hong, J.H. Shim, J.Y. Suh, J.Y. Huh, W.S. Jung, Mater. Charact. 102, 79–84 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Hald, Int. J. Pres. Ves. Pip. 85, 30–37 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Strang, V. Vodarek, Mater. Sci. Technol. 12, 552–556 (1996)CrossRefGoogle Scholar
  7. 7.
    G. Götz, W. Blum, Mater. Sci. Eng. A 348, 201–207 (2003)CrossRefGoogle Scholar
  8. 8.
    P. Zhou, Q. Ma, J. Met. Mater. Int. 23, 359–368 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Ferdowsi, D. Nakhaie, P. Benhangi et al., JMEPEG 23, 1077–1087 (2014)CrossRefGoogle Scholar
  10. 10.
    M.S. Ghazani, B. Eghbali, G. Ebrahimi, Met. Mater. Int. 23, 964–973 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Xu, L. Chen, G. Chen, Vacuum 147, 8–17 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, B. Wang, Y. Liu, Vacuum 146, 35–43 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Jiang, W. Fu, Z. Wang, J. Mater. Sci. 46, 4654–4659 (2011)CrossRefGoogle Scholar
  14. 14.
    W. Zhang, S. Sun, D. Zhao, D. Samantaray, C. Phaniraj, A.K. Bhaduri et al., Mater. Sci. Eng. A 560, 170–177 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Hadadzadeh, F. Mokdad, M.A. Wells, Mater. Sci. Eng. A 720, 180–188 (2018)CrossRefGoogle Scholar
  16. 16.
    K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, Mater. Process Technol. 56, 897–907 (1996)CrossRefGoogle Scholar
  17. 17.
    L. Chen, G. Zhao, J. Yu, Mater. Design. 74, 25–35 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, H. Di, X. Wang, Mater. Design. 44, 354–364 (2013)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Ding, Q.D. Hu, L. Zeng, Int. J. Miner. Metall. Mater. 23, 1275–1285 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A 40, 1175–1189 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.C. Lin, M.S. Chen, J. Mater. Process Technol. 209, 4578–4583 (2009)CrossRefGoogle Scholar
  22. 22.
    Y.C. Lin, D.G. He, M.S. Chen, Mater. Des. 97, 13–24 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.V.R.K. Prasad, K.P. Rao, Mater. Sci. Eng. A 432, 170–177 (2006)CrossRefGoogle Scholar
  24. 24.
    E. Shafiei, N. Goodarzi, K. Dehghani, Can. Metall. Quart. 56, 104–112 (2013)CrossRefGoogle Scholar
  25. 25.
    L.P. Shen, Z.Y. Jin, J. Liu, Adv. Mater. Res. 753–755, 913–917 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Gwon, S. Shin, J. Jeon, T. Song, S. Kim, C. Bruno, C. De. Met. Mater. Int. (2018).  https://doi.org/10.1007/s12540-018-00224-9 Google Scholar
  27. 27.
    C.M. Sellars, W.J. Tegart, Int. Metall. Rev. 17, 1–21 (1972)CrossRefGoogle Scholar
  28. 28.
    J. Jonas, C.M. Sellars, W.J.M. Tegart, Metall. Rev. 14, 1–24 (1969)Google Scholar
  29. 29.
    H. Shi, A.J. Mclaren, C.M. Sellars, R. Shahani, R. Bolingbroke, Mater. Sci. Technol. 13, 210–216 (1997)CrossRefGoogle Scholar
  30. 30.
    C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944)CrossRefGoogle Scholar
  31. 31.
    F.A. Slooff, J. Zhou, J. Duszczyk, Scr. Mater. 57, 759–762 (2007)CrossRefGoogle Scholar
  32. 32.
    Y.C. Lin, M.S. Chen, J. Zhong, J. Mater, Process Technol. 205, 308–315 (2008)CrossRefGoogle Scholar
  33. 33.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883–1892 (1984)CrossRefGoogle Scholar
  34. 34.
    C. Suriyapha, B. Bubphachot, S. Rittidech, Sci. World J. 2015, 1–9 (2015)CrossRefGoogle Scholar
  35. 35.
    H.J. Mcqueen, Philos. Mag. A 60, 447–471 (1989)CrossRefGoogle Scholar
  36. 36.
    S. Gourdet, F. Montheillet, Mater. Sci. Eng. A 283, 274–288 (2000)CrossRefGoogle Scholar
  37. 37.
    X.L. Ma, C.X. Xiang, Acta Mater. 116, 43–52 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Ji, Q. Li, L. Li, Mater. Sci. Eng. A 615, 247–254 (2014)CrossRefGoogle Scholar
  39. 39.
    N.D. Ryan, H.J. Mcqueen, Can. Metall. Quart. 29, 147–162 (1990)CrossRefGoogle Scholar
  40. 40.
    J.J. Jonas, X. Quelennec, L. Jiang, Acta Mater. 57, 2748–2756 (2009)CrossRefGoogle Scholar
  41. 41.
    E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127–136 (1996)CrossRefGoogle Scholar
  42. 42.
    E.J. Giordani, A.M. Jorge, Scr. Mater. 55, 743–746 (2006)CrossRefGoogle Scholar
  43. 43.
    B. Gong, X.W. Duan, J.S. Liu, Vacuum 155, 345–357 (2018)CrossRefGoogle Scholar
  44. 44.
    E. Cerri, E. Evangelista, A. Forcellese, Mater. Sci. Eng. A 197, 181–198 (1995)CrossRefGoogle Scholar
  45. 45.
    E.P. Busso, F.A. Mcclintock, Int. J. Plasticity. 12, 1–28 (1996)CrossRefGoogle Scholar
  46. 46.
    S. Serajzadeh, A.K. Taheri, Mech. Res. Commun. 30, 87–93 (2003)CrossRefGoogle Scholar
  47. 47.
    A. He, G. Xie, X. Yang, Comput. Mater. Sci. 98, 64–69 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Laasraoui, J.J. Jonas, Metal. Trans. A Phys. Metall. Mater. Sci. 22, 1545–1555 (1991)CrossRefGoogle Scholar
  49. 49.
    B. Wu, M.Q. Li, D.W. Ma, Mater. Sci. Eng. A 542, 79–87 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations