Advertisement

Herringbone Structure and Significantly Enhanced Hardness in W-Modified Ti2AlNb Alloys by Spark Plasma Sintering

  • Junpeng Yang
  • Qi CaiEmail author
  • Yongchang LiuEmail author
  • Chong Li
  • Zongqing Ma
  • Huijun Li
Article
  • 1 Downloads

Abstract

The W-modified Ti2AlNb-based alloys synthesized at 1100 °C by spark plasma sintering were solution treated at 1300 °C for 4 h and then aged at 800–1000 °C for 1 h. The phase composition, microstructure evolution, and microhardness of the aged alloys are investigated in this study. A significant enhancement of hardness, ~ 750 HV, is obtained in the alloy aged at 900 °C, while that of the one without W addition is only ~ 470 HV. The hardness is also higher than that of common β-Ti and Ti–6Al–4V alloys. As the ageing temperature increases, the B2/O structure evolves from B2 + O colonies to Widmannstätten structure, followed by a “disordering to ordering” procedure. This process also involves the variation of the angle between adjacent O phase from 90° to 60°. Specifically, a herringbone Widmannstätten B2 + O structure is constructed in the alloys aged in the α2 + B2 + O phase region, which is related to the diffusion of W and the substitution of W for Nb in the lattice of B2 or O.

Keywords

Ti2AlNb-based alloy W addition Ageing Widmannstätten structure Microhardness 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Granted Nos. 51474156, 51604193, 51804195, and U1660201), the National High Technology Research and Development Program (“863″ Program) of China (Granted No. 2015AA042504), and the China Postdoctoral Science Foundation (Grant No. 2017M621429) for financial support.

References

  1. 1.
    D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, A new ordered orthorhombic phase in a Ti3Al–Nb alloy. Acta Metall. 36, 871–882 (1988)CrossRefGoogle Scholar
  2. 2.
    J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide. Adv. Eng. Mater. 3, 851–864 (2001)CrossRefGoogle Scholar
  3. 3.
    T.K. Nandy, R.S. Mishra, D. Banerjee, Creep behaviour of an orthorhombic phase in a Ti–Al–Nb alloy. Scripta Mater. 28, 569–574 (1993)CrossRefGoogle Scholar
  4. 4.
    H. Song, Z.J. Wang, X.D. He, Improving in plasticity of orthorhombic Ti2AlNb-based alloys sheet by high density electropulsing. Trans. Nonferrous Metal. Soc. 23, 32–37 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Wu, M. Zinkevich, F. Aldinger, M. Chu, J. Shen, Prediction of the ordering behaviours of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation. Intermetallics 16, 42–51 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Banerjee, The intermetallic Ti2AlNb. Prog. Mater Sci. 42, 135–158 (1997)CrossRefGoogle Scholar
  7. 7.
    P.M. Sarosi, J.A. Hriljac, I.P. Jones, Atom location by channelling-enhanced microanalysis and the ordering of Ti2AlNb. Philos. Mag. 83, 4031–4044 (2003)CrossRefGoogle Scholar
  8. 8.
    K. Muraleedharan, T.K. Nandy, D. Banerjee, S. Lele, Phase stability and ordering behaviour of the O phase in Ti–Al–Nb alloys. Intermetallics 3, 187–199 (1995)CrossRefGoogle Scholar
  9. 9.
    W. Wang, W.D. Zeng, Y.T. Liu, G.X. Xie, X.B. Liang, Microstructural evolution and mechanical properties of Ti–22Al–25Nb (At.%) orthorhombic alloy with three typical microstructures. J. Mater. Eng. Perform. 27, 293–303 (2018)CrossRefGoogle Scholar
  10. 10.
    W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, X. Liang, Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition. Mater. Sci. Eng., A 662, 120–128 (2016)CrossRefGoogle Scholar
  11. 11.
    C.J. Boehlert, C.J. Cowen, C.R. Jaeger, M. Niinomi, T. Akahori, Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications. Mater. Sci. Eng., C 25, 263–275 (2005)CrossRefGoogle Scholar
  12. 12.
    S.L. Semiatin, P.R. Smith, Microstructural evolution during rolling of Ti–22Al–23Nb sheet. Mater. Sci. Eng., A 202, 26–35 (1995)CrossRefGoogle Scholar
  13. 13.
    Y.T. Wu, C.T. Yang, C.H. Koo, A.K. Singh, A study of texture and temperature dependence of mechanical properties in hot rolled Ti–25Al–xNb alloys. Mater. Chem. Phys. 80, 339–347 (2003)CrossRefGoogle Scholar
  14. 14.
    J. Yang, G. Wang, X. Jiao, X. Li, C. Yang, Hot deformation behavior and microstructural evolution of Ti–22Al–25Nb–1.0B alloy prepared by elemental powder metallurgy. J. Alloy. Compd. 695, 1038–1044 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, R. Yang, Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys. J. Mater. Sci. Technol. 33, 172–178 (2017)CrossRefGoogle Scholar
  16. 16.
    H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, P.X. Zhang, Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization. Mater. Design 89, 823–829 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Emura, K. Tsuzaki, K. Tsuchiya, Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater. Sci. Eng. A 528, 355–362 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, S.K. Hwang, The effect of ageing on microstructure of the O-phase in Ti–24Al–14Nb–3V–0.5Mo alloy. Mater. Lett. 49, 131–136 (2001)CrossRefGoogle Scholar
  19. 19.
    M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, H. Li, Formation of fine B2/β + O structure and enhancement of hardness in the aged Ti2AlNb-based alloys prepared by spark plasma sintering. Metall. Mater. Trans. A 48, 4365–4371 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Tang, S. Nakazawa, M. Hagiwara, Creep behavior of tungsten-modified orthorhombic Ti–22Al–20Nb–2W alloy. Scr. Mater. 43, 1065–1070 (2000)CrossRefGoogle Scholar
  21. 21.
    F. Tang, S. Emura, M. Hagiwara, Tensile properties of tungsten-modified orthorhombic Ti–22Al–20Nb–2W alloy. Scr. Mater. 44, 671–676 (2001)CrossRefGoogle Scholar
  22. 22.
    S.J. Yang, S.W. Nam, M. Hagiwara, Phase identification and effect of W on the microstructure and micro-hardness of Ti2AlNb-based intermetallic alloys. J. Alloy. Compd. 350, 280–287 (2003)CrossRefGoogle Scholar
  23. 23.
    F.A. Sadi, C. Servant, On the B2 → O phase transformation in Ti–Al–Nb alloys. Mater. Sci. Eng. A 346, 19–28 (2003)CrossRefGoogle Scholar
  24. 24.
    A.A. Popov, A.G. Illarionov, S.V. Grib, S.L. Demakov, M.S. Karabanalov, O.A. Elkina, Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide. Phys. Met. Metallogr. 106, 399–410 (2008)CrossRefGoogle Scholar
  25. 25.
    C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Part I. The microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys. Metall. Mater. Trans. A 30, 2305–2323 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, S. Lele, Transformations in a Ti–24Al–15Nb alloy: Part I Phase equilibria and microstructure. Metall. Mater. Trans. A 23, 401–415 (1992)CrossRefGoogle Scholar
  27. 27.
    H.T. Weykamp, D.R. Baker, D.M. Paxton, M.J. Kaufman, Continuous cooling transformations in Ti3Al + Nb alloys. Scr. Mater. 24, 445–450 (1990)CrossRefGoogle Scholar
  28. 28.
    S. Narasimhan, D. Vanderbilt, Elastic stress domains and the herringbone reconstruction on Au(111). Phys. Rev. Lett. 69, 1564–1567 (1992)CrossRefGoogle Scholar
  29. 29.
    W. Wang, W. Zeng, C. Xue, X. Liang, J. Zhang, Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy. Intermetallics 45, 29–37 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Li, S. Hu, J. Shen, H. Zhang, X. Bu, Microstructure and mechanical properties of laser-welded joints of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. J. Mater. Eng. Perform. 25, 1880–1888 (2016)CrossRefGoogle Scholar
  31. 31.
    K.Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E.J. Lavemia, R.Z. Valiev, B. Sarrafpour, H. Zoellner, S.P. Ringer, Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater. Sci. Eng., C 33, 3530–3536 (2013)CrossRefGoogle Scholar
  32. 32.
    E. Brandl, A. Schoberth, C. Leyens, Morphology, microstructure, and hardness of titanium (Ti–6Al–4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng., A 532, 295–307 (2012)CrossRefGoogle Scholar
  33. 33.
    Q. Cai, M. Li, Y. Zhang, Y. Liu, Z. Ma, C. Li, H. Li, Precipitation behavior of Widmannstätten O phase associated with interface in aged Ti2AlNb-based alloy. Mater. Charact. 145, 413–422 (2018)CrossRefGoogle Scholar
  34. 34.
    C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, New York, 2003)CrossRefGoogle Scholar
  35. 35.
    V. Recina, B. Karlsson, Tensile properties and microstructure of Ti–48Al–2W–0.5Si γ-titanium aluminide at temperatures between room temperature and 800 °C. Mater. Sci. Techonl. 15, 57–66 (2013)CrossRefGoogle Scholar
  36. 36.
    Y.I. Frenkel, T. Kontorova, On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Materials Genome InstituteShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations