Impact of Non-Reactive Ceria Nanoparticles on the Wettability and Reaction Kinetics Between Lead-Free Sn–58Bi and Cu Pad

  • Ashutosh Sharma
  • Ashok K. Srivastava
  • Kwan LeeEmail author
  • Byungmin AhnEmail author


Lead-free Sn–58Bi–xCeO2 (x in wt% = 0, 0.3, 0.6 and 0.9) composite solder was prepared via mechanical blending and melting route. The ceria nanoparticles (CeO2) were prepared from chemical precipitation method. Further, the variation in microstructure and phase composition, melting point, wetting and mechanical properties were studied through scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, differential scanning calorimetry, spreading ratio, contact angle and tensile testing, respectively. It was shown that Sn–58Bi–xCeO2 composite solders show 16.66 and 32.05% increase in spread ratio and wetting angle, respectively, due to the enhanced melt fluidity up to x = 0.6. The fraction of hard Bi-phase was also refined simultaneously. The tensile results showed a slight decrease in ultimate tensile strength and enhancement in ductility up to x = 0.3 and 0.6 except at x = 0.9. High temperature aging also demonstrated a reduced intermetallic compounds thickness when fraction of ceria nanoparticles in the matrix was up to x = 0.6. It is suggested that for optimum set of soldering properties, the concentration of the nanoparticles should be at 0.6 wt% in the monolithic Sn–58Bi alloy.


Composite solder Nanoparticles Wetting Spread ratio IMC Bismuth 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044481) (B.A.). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07044706) (A.S.).


  1. 1.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  2. 2.
    K. Suganuma, Curr. Opin. Solid State. Mater. 5, 55 (2001)CrossRefGoogle Scholar
  3. 3.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Sharma, S. Das, K. Das, in Electrodeposition of Composite Materials, Ed. by Dr. A.M.A Mohamed (InTech, Croatia, 2016), p. 253, Available from:
  5. 5.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)CrossRefGoogle Scholar
  6. 6.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Hua, Z. Mei, J. Glazer, in Proceedings of Electronic Components and Technology Conference (IEEE, Seattle, USA, 1998) p. 277Google Scholar
  8. 8.
    H.F. Zou, Q.K. Zhang, Z.F. Zhang, J. Mater. Res. 26, 449 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Liu, W. Zhang, M. Sui, J. Shang, Acta Metall. Sin. 41(8), 847 (2005)Google Scholar
  10. 10.
    M. Hansen, K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958)CrossRefGoogle Scholar
  11. 11.
    H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, J. Alloys Compd. 511, 176 (2012)CrossRefGoogle Scholar
  12. 12.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907 (2006)CrossRefGoogle Scholar
  13. 13.
    O. Mokhtari, H. Nishikawa, Mater. Sci. Eng. A 651, 831 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloys Compd. 633, 377 (2015)CrossRefGoogle Scholar
  15. 15.
    W.R. Myung, M.K. Ko, Y. Kim, J. Mater. Sci.: Mater. Electron. 26, 8707 (2015)Google Scholar
  16. 16.
    L. Zhang, L. Sun, Y.H. Guo, J. Mater. Sci.: Mater. Electron. 26, 7629 (2015)Google Scholar
  17. 17.
    W.X. Dong, Y.W. Shi, Z.D. Xia, J. Electron. Mater. 37, 982 (2008)CrossRefGoogle Scholar
  18. 18.
    E.E.M. Noor, A. Singh, Surf. Mount. Technol. 26, 147 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Hu, Y. Li, Y. Chan, F. Wu, Microelectron. Reliab. 55, 1226 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Ma, X. Li, M. Zhou, L. Yang, P. Wu, Mater. Des. 113, 264 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Zhang, Q. Chen, Compos. Part B: Eng. 58, 275 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Sun, Y. Chan, F. Wu, Mater. Sci. Eng. A 656, 249 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Zhu, Y.C. Chan, F.S. Wu, in Proceedings of 16th International Conference on Electronic Packaging Technology (IEEE, Changsha, China, 2015) p. 140Google Scholar
  24. 24.
    X.Z. Li, Y. Ma, W. Zhou, P. Wu, Mater. Sci. Eng. A 684, 328 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Sharma, S. Bhattacharya, S. Das, K. Das, Metall. Mater. Trans. A 44A, 5587 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Fouzder, Y.C. Chan, D.K. Chan, J. Mater. Sci.: Mater. Electron. 25, 5375 (2014)Google Scholar
  27. 27.
    Y.H. Liu, J.C. Zuo, X.F. Ren, L. Yong, Metalurgija 53, 463 (2014)Google Scholar
  28. 28.
    Japanese Industrial Standards. JIS Z 3197: 2012Google Scholar
  29. 29.
    JEDEC no. 22-A101 Standard, JEDEC Solid State Technology Association, 2015Google Scholar
  30. 30.
    A. Sharma, H.R. Sohn, J.P. Jung, Metall. Mater. Trans. A 47A, 494 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Shen, Z.Y. Tan, Z. Chen, Mater. Sci. Eng. A 561, 232 (2013)CrossRefGoogle Scholar
  32. 32.
    D.H. Jung, A. Sharma, J.P. Jung, J. Alloys Compd. 743, 300 (2018)CrossRefGoogle Scholar
  33. 33.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011)CrossRefGoogle Scholar
  34. 34.
    P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37, 874 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, J. Mater. Sci.: Mater. Electron. 24, 3210 (2013)Google Scholar
  36. 36.
    A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, A.A. Ibrahiem, Mater. Des. 52, 966 (2003)CrossRefGoogle Scholar
  37. 37.
    D.C. Lin, S. Liu, T.M. Guo, M. Petraroli, Mater. Sci. Eng. A 360, 285 (2003)CrossRefGoogle Scholar
  38. 38.
    L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990 (2010)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, X. Zhao, X. Xie, Y. Gu, Y. Liu, J. Mater. Sci.: Mater. Electron. 26, 9387 (2015)Google Scholar
  40. 40.
    A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, H.R.M. Hosseini, J. Mater. Sci.: Mater. Electron. 24, 839 (2013)Google Scholar
  41. 41.
    P.A. Meenan, S.R. Anderson, D.L. Klug, Handbook of Industrial Crystallization, 2nd edn. (Butterworth-Heinemann, Boston, 2002)Google Scholar
  42. 42.
    K.M. Kumar, V. Kripesh, L. Shen, A.A.O. Tay, Thin Solid Films 504, 371 (2006)CrossRefGoogle Scholar
  43. 43.
    K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)CrossRefGoogle Scholar
  44. 44.
    K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 450, 229 (2008)CrossRefGoogle Scholar
  45. 45.
    L. Wang, D.Q. Yu, J. Zhao, M.L. Huang, Mater. Lett. 56, 1039 (2002)CrossRefGoogle Scholar
  46. 46.
    W. Zhang, Y. Zhong, C. Wang, J. Mater. Sci. Technol. 28, 661 (2012)CrossRefGoogle Scholar
  47. 47.
    S.M.L. Nai, J. Wei, M. Gupta, Mater. Sci. Eng. A 423, 166 (2006)CrossRefGoogle Scholar
  48. 48.
    S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401 (2006)CrossRefGoogle Scholar
  49. 49.
    M.A.A. Mohd Salleh, A.B. Mustafa, H. Kamarudin, M. Bnhussain, M.H. Zan@Hazizi, F. Somidin, Phys. Procedia 22, 299 (2011)Google Scholar
  50. 50.
    I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 366, 50 (2004)CrossRefGoogle Scholar
  51. 51.
    L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mat. Sci. Eng. A 545, 194 (2012)CrossRefGoogle Scholar
  52. 52.
    T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloys Compd. 509, 1885 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Tang, Y.C. Pan, G.Y. Li, J. Mater. Sci.: Mater. Electron. 24, 1587 (2012)Google Scholar
  54. 54.
    Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, Z. Li, J. Alloys Compd. 627, 39 (2015)CrossRefGoogle Scholar
  55. 55.
    Y. Li, X.C. Zhao, Y. Liu, Y. Wang, Y. Wang, J. Mater. Sci.: Mater. Electron. 25, 3816 (2014)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Department of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea
  2. 2.Department of Metallurgical and Materials Engineering, SOEOP Jindal UniversityRaigarhIndia

Personalised recommendations