Advertisement

Microstructure Evolution Modeling and Simulation for Dynamic Recrystallization of Cr12MoV Die Steel During Hot Compression Based on Real Metallographic Image

  • F. Sun
  • D. Q. ZhangEmail author
  • L. Cheng
  • P. Zheng
  • D. M. Liao
  • B. Zhu
Article
  • 11 Downloads

Abstract

In this work, microstructure evolution of dynamic recrystallization (DRX) behavior in Cr12MoV die steel was investigated via experiments and simulations systematically. Firstly, hot compression tests were performed to obtain the true stress–strain curves. Based on the experimental results, the flow stress model was established, and Avrami equation was developed to model the kinetics of DRX. Then, the cellular automaton (CA) model was established to describe DRX behavior. In order to obtain more accurate simulation results, a microstructure enhancement, extraction and conversion program based on fingerprint image enhancement algorithm was developed to generate real initial microstructure which could be directly used in CA simulation. With real initial microstructure generation, good agreement between simulated and experimental results was achieved, indicating the high accuracy of the established CA model. Finally, the CA model was employed to investigate the hot deformation behavior of Cr12MoV die steel under multiple thermomechanical conditions. It could be found that a lower strain rate was beneficial to the occurrence of DRX. When the strain rate was beyond 1.0 s−1, the DRX fraction was very small. This work would provide a significant guidance to optimize the hot working process of Cr12MoV die steel or some other similar steels.

Keywords

Cr12MoV die steel Hot deformation Dynamic recrystallization Cellular automaton Microstructure evolution Fingerprint image enhancement 

Notes

Acknowledgements

This research is supported by the National Science Fund for Distinguished Young Scholars (NSFC51725504), the Program for New Century Excellent Talents in University (NCET-13-0229) and the National Science & Technology Key Projects of Numerical Control (2012ZX04010-031).

References

  1. 1.
    B. Wu, L. Deng, P. Liu, F. Zhang, J. Duan, X. Zeng, Appl. Surf. Sci. 409, 403 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Kim, J.Y. Kang, D. Son, T.H. Lee, K.M. Cho, Mater. Charact. 107, 376 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Capdevila, I. Toda-Caraballo, G. Pimentel, J. Chao, Met. Mater. Int. 18, 799 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Gubicza, N.Q. Chinh, J.L. Lábár, S. Dobatkin, Z. Hegedűs, T.G. Langdon, J. Alloys Compd. 483, 271 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Dehghan-Manshadi, M. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39, 1359 (2008)CrossRefGoogle Scholar
  7. 7.
    P. Zhou, Q. Ma, Met. Mater. Int. 23, 359 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Shahriari, R. Vafaei, E.M. Sharifi, K. Farmanesh, Met. Mater. Int. 24, 955 (2018)CrossRefGoogle Scholar
  10. 10.
    O. Beltran, K. Huang, R.E. Logé, Comput. Mater. Sci. 102, 293 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Tan, J. Li, Z. Guan, J. Yang, J. Shu, Mater. Des. 84, 204 (2015)CrossRefGoogle Scholar
  12. 12.
    E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, D. Chicot, Int. J. Plast. 54, 113 (2014)CrossRefGoogle Scholar
  13. 13.
    J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, Acta Mater. 57, 2748 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.S. Li, Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 57, 761 (2009)CrossRefGoogle Scholar
  15. 15.
    M.S. Chen, W.Q. Yuan, H.B. Li, Z.H. Zou, Comput. Mater. Sci. 136, 163 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Zhi, X. Liu, H. Yu, Comput. Mater. Sci. 81, 104 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Kugler, R. Turk, Acta Mater. 52, 4659 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Ding, Z.X. Guo, Acta Mater. 49, 3163 (2001)CrossRefGoogle Scholar
  19. 19.
    F. Chen, K. Qi, Z. Cui, X. Lai, Comput. Mater. Sci. 83, 331 (2014)CrossRefGoogle Scholar
  20. 20.
    L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, C. Sommitsch, Comput. Mater. Sci. 94, 85 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Chen, Z. Cui, S. Chen, Mater. Sci. Eng. A 528, 5073 (2011)CrossRefGoogle Scholar
  23. 23.
    J.C. Li, Z.Y. Xie, S.P. Li, Y.Y. Zang, J. Cent. South Univ. Technol. 23, 497 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Asadi, M.K.B. Givi, M. Akbari, Int. J. Adv. Manuf. Technol. 83, 301 (2016)CrossRefGoogle Scholar
  25. 25.
    G. Li, F. Qin, L. Zhu, Q. Li, L. Li, J. Mater. Eng. Perform. 26, 2698 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Hallberg, M. Wallin, M. Ristinmaa, Comput. Mater. Sci. 49, 25 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Li, X. Sun, H. Yang, Int. J. Plast. 87, 154 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.X. Liu, Y.C. Lin, H.B. Li, W.X. Wen, X.M. Chen, M.S. Chen, Mater. Sci. Eng. A 626, 432 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Das, Comput. Mater. Sci. 47, 705 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Des. 90, 804 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Sakai, J. Mater. Process. Technol. 53, 349 (1995)CrossRefGoogle Scholar
  32. 32.
    A. Momeni, S.M. Abbasi, H. Badri, Appl. Math. Model. 36, 5624 (2012)CrossRefGoogle Scholar
  33. 33.
    E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127 (1996)CrossRefGoogle Scholar
  34. 34.
    C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1994)CrossRefGoogle Scholar
  35. 35.
    C.M. Sellars, W.J. McTegart, Acta Metall. 14, 1136 (1996)CrossRefGoogle Scholar
  36. 36.
    A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1199 (2001)CrossRefGoogle Scholar
  37. 37.
    A. Mwembela, E.B. Konopleva, H.J. McQueen, Scr. Mater. 11, 1789 (1997)CrossRefGoogle Scholar
  38. 38.
    L.S. Tóth, A. Molinari, Y. Estrin, J. Eng. Mater. Technol. 124, 71 (2002)CrossRefGoogle Scholar
  39. 39.
    H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)CrossRefGoogle Scholar
  40. 40.
    V. Marx, F.R. Reher, G. Gottstein, Acta Mater. 47, 1219 (1999)CrossRefGoogle Scholar
  41. 41.
    M.E. Wahabi, J.M. Cabrera, J.M. Prado, Mater. Sci. Eng. A 343, 116 (2003)CrossRefGoogle Scholar
  42. 42.
    W. Roberts, B. Ahlblom, Acta Metall. 26, 801 (1978)CrossRefGoogle Scholar
  43. 43.
    W.T. Read, W. Shockley, Phys. Rev. 78, 275 (1950)CrossRefGoogle Scholar
  44. 44.
    L. Hong, Y. Wan, A. Jain, I.E.E.E. Trans, Pattern Anal. Mach. Intell. 20, 777 (1998)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Faculty of ScienceShizuoka UniversityShizuokaJapan
  3. 3.School of Mechanical EngineeringHubei University of TechnologyWuhanChina
  4. 4.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations