T6 Heat Treatment Impact on the Random Frequency Vibration Stress of Al–Si–Mg Alloys

  • V. H. Carneiro
  • H. PugaEmail author


Recent studies show an interest on the static and dynamic mechanical properties in applications where both influence the overall performance of mechanical systems. This study explores the impact of the T6 heat treatment in the elastic and damping properties of Al–Si–Mg alloys. Consequently, the role of such properties is characterized by the stresses that are developed in resonant structures. Experimental testing shows that, due to pinning length modifications, the heat treatments generate a progressive increase in Young’s modulus and a reduction in loss factor. Recurring to finite element analysis, it is concluded that such modifications in material properties generate a reduction in resonant stress after solution treatment. This stress tends to increase as the artificial ageing progresses. A model, based on an exponential decay function, is proposed to describe the variation of resonant stress as the elastic and damping properties are changed during the T6 treatment.


Artificial ageing Al alloys Young’s modulus Loss factor Static Damping 



  1. 1.
    P. Fan, S. Cockcroft, D. Maijer, L. Yao, C. Reilly, A. Phillion, Examination and simulation of silicon macrosegregation in A356 wheel casting. Metals 8(7), 503 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Lee, Effect of Ti-B addition on the variation of microporosity and tensile properties of A356 aluminium alloys. Mater. Sci. Eng. A 668, 152–159 (2016)CrossRefGoogle Scholar
  3. 3.
    İ. Öztürk, G. Hapçı Ağaoğlu, E. Erzi, D. Dispinar, G. Orhan, Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy. J. Alloys Compd. 763, 384–391 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. Liang, Q. Zhang, Quasi-static loading responses and constitutive modeling of Al–Si–Mg alloy. Metals 8(10), 838 (2018)CrossRefGoogle Scholar
  5. 5.
    M.J. Roy, D.M. Maijer, L. Dancoine, Constitutive behavior of as-cast A356. Mater. Sci. Eng. A 548, 195–205 (2012)CrossRefGoogle Scholar
  6. 6.
    B. Dang, C. Liu, F. Liu, Y. Liu, Y. Li, Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy. Trans. Nonferrous Met. Soc. China 26(3), 634–642 (2016)CrossRefGoogle Scholar
  7. 7.
    R.G. Guan, Z.Y. Zhao, Y.D. Li, T.J. Chen, S.X. Xu, P.X. Qi, Microstructure and properties of squeeze cast A356 alloy processed with a vibrating slope. J. Mater. Process. Technol. 229, 514–519 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, J. Li, H. Yue, J. Zhang, T. Li, Microstructure evolution of A356 alloy under compound field. J. Alloys Compd. 484(1), 458–462 (2009)CrossRefGoogle Scholar
  9. 9.
    W. Xiaoyan, Z. Huarui, J. Feng, Y. Ying, J. Lina, Z. Hu, Microstructure and grain refinement performance of a new Al-5Nb-RE-B master alloy. Rare Met. Mater. Eng. 47(7), 2017–2022 (2018)CrossRefGoogle Scholar
  10. 10.
    Q. Wang, Z. Shi, H. Li, Y. Lin, N. Li, T. Gong, R. Zhang, H. Liu, Effects of holmium additions on microstructure and properties of A356 aluminum alloys. Metals 8(10), 849 (2018)CrossRefGoogle Scholar
  11. 11.
    X.L. Cui, Y.Y. Wu, T. Gao, X.F. Liu, Preparation of a novel Al–3B–5Sr master alloy and its modification and refinement performance on A356 alloy. J. Alloys Compd. 615, 906–911 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Puga, J. Barbosa, N.Q. Tuan, F. Silva, Effect of ultrasonic degassing on performance of al-based components. Trans. Nonferrous Met. Soc. China 24(11), 3459–3464 (2014)CrossRefGoogle Scholar
  13. 13.
    N.Q. Tuan, H. Puga, J. Barbosa, A.M.P. Pinto, Grain refinement of Al–Mg–Sc alloy by ultrasonic treatment. Met. Mater. Int. 21(1), 72–78 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Joseph, S. Kumar, Role of Si modification on the compressive flow behavior of Al–Si based alloy. Mater. Charact. 110, 272–281 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Rao, J. Zhang, R. Liu, J. Zheng, D. Yin, Modification of eutectic Si and the microstructure in an Al–7Si alloy with barium addition. Mater. Sci. Eng. A 728, 72–79 (2018)CrossRefGoogle Scholar
  16. 16.
    W. Liu, W. Xiao, C. Xu, M. Liu, C. Ma, Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al–Si cast alloy. Mater. Sci. Eng. A 693, 93–100 (2017)CrossRefGoogle Scholar
  17. 17.
    V.H. Carneiro, H. Puga, J. Meireles, Heat treatment as a route to tailor the yield-damping properties in A356 alloys. Mater. Sci. Eng. A 729, 1–8 (2018)CrossRefGoogle Scholar
  18. 18.
    F.J. Alvarez-Antolin, E. Segurado-Frutos, H. Neira-Castaño, J. Asensio-Lozano, Heat treatment optimization in Al–Cu–Mg–Si alloys, with or without prior deformation. Metals 8(10), 735 (2018)CrossRefGoogle Scholar
  19. 19.
    V.H. Carneiro, H. Puga, Solution treatment enhances both static and damping properties of Al–Si–Mg alloys. Metall. Mater. Trans. A 49(12), 5942–5945 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Gecu, S. Acar, A. Kisasoz, K.A. Guler, A. Karaaslan, Influence of T6 heat treatment on A356 and A380 aluminium alloys manufactured by Thixoforging combined with low superheat casting. Trans. Nonferrous Met. Soc. China 28(3), 385–392 (2018)CrossRefGoogle Scholar
  21. 21.
    S.L. Pramod, Ravikirana, A.K.P. Rao, B.S. Murty, S.R. Bakshi, Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. Mater. Sci. Eng. A 674, 438–450 (2016)CrossRefGoogle Scholar
  22. 22.
    M.A. Elahi, S.G. Shabestari, Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy. Trans. Nonferrous Met. Soc. China 26(4), 956–965 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, N. Ma, Y. Le, S. Li, H. Wang, Mechanical properties and damping capacity after grain refinement in A356 alloy. Mater. Lett. 59(17), 2174–2177 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, N. Ma, H. Wang, X. Li, Study on damping behavior of A356 alloy after grain refinement. Mater. Des. 29(3), 706–708 (2008)CrossRefGoogle Scholar
  25. 25.
    B. Milkereit, H. Fröck, C. Schick, O. Kessler, Continuous cooling precipitation diagram of cast aluminium alloy Al–7Si–0.3Mg. Trans. Nonferrous Met. Soc. China 24(7), 2025–2033 (2014)CrossRefGoogle Scholar
  26. 26.
    C.Y. Liu, H.J. Jiang, B. Zhang, Z.Y. Ma, High damping capacity of Al alloys produced by friction stir processing. Mater. Charact. 136, 382–387 (2018)CrossRefGoogle Scholar
  27. 27.
    H.J. Jiang, C.Y. Liu, Y. Chen, Z.X. Yang, H.F. Huang, L.L. Wei, Y.B. Li, H.Q. Qi, Evaluation of microstructure, damping capacity and mechanical properties of Al–35Zn and Al–35Zn–0.5Sc alloys. J. Alloys Compd. 739, 114–121 (2018)CrossRefGoogle Scholar
  28. 28.
    H.J. Jiang, C.Y. Liu, B. Zhang, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, Simultaneously improving mechanical properties and damping capacity of Al–Mg–Si alloy through friction stir processing. Mater. Charact. 131, 425–430 (2017)CrossRefGoogle Scholar
  29. 29.
    L.J. Colley, M.A. Wells, W.J. Poole, Microstructure–yield strength models for heat treatment of Al–Si–Mg casting alloys II: modelling microstructure and yield strength evolution. Can. Metall. Q. 53(2), 138–150 (2014)CrossRefGoogle Scholar
  30. 30.
    J.Y. Yao, J.A. Taylor, Characterisation of intermetallic particles formed during solution treatment of an Al–7Si–0.4Mg–0.12Fe alloy. J. Alloys Compd. 519, 60–66 (2012)CrossRefGoogle Scholar
  31. 31.
    R. Chen, Q. Xu, Z. Jia, B. Liu, Precipitation behavior and hardening effects of Si-containing dispersoids in Al–7Si–Mg alloy during solution treatment. Mater. Des. 90, 1059–1068 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Puga, V.H. Carneiro, J. Barbosa, D. Soares, Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys. Met. Mater. Int. 22(5), 863–871 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Granato, K. Lücke, Theory of mechanical damping due to dislocations. J. Appl. Phys. 27(6), 583–593 (1956)CrossRefGoogle Scholar
  34. 34.
    H.K. Småbråten, Characterization of precipitates at maximum hardness and overaged conditions in Al–Mg–Si alloys (NTNU, Trondheim, 2011)Google Scholar
  35. 35.
    A. Bahrami, Modeling of precipitation sequence and ageing kinetics in Al–Mg–Si alloys (TUDelft, Delft, 2010)Google Scholar
  36. 36.
    G. Ran, J.E. Zhou, Q.G. Wang, Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy. J. Mater. Process. Technol. 207(1), 46–52 (2008)CrossRefGoogle Scholar
  37. 37.
    X. Cao, J. Campbell, Morphology of β-Al5FeSi phase in Al–Si cast alloys. Mater. Trans. 47(5), 1303–1312 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.MEtRiCS – UMinhoUniversity of MinhoGuimarãesPortugal
  2. 2.CMEMS – UMinhoUniversity of MinhoGuimarãesPortugal

Personalised recommendations