Advertisement

Analysis of Strain Rate Sensitivity and Strain Rate Hardening in Co–Cr–Ni–Mo Wires Drawn with Different Drawing Practices

  • Sai Srikanth GvkEmail author
  • M. J. Tan
  • Zhenyun Liu
Article
  • 20 Downloads

Abstract

This study investigates the effect of strain rate (SR) on the strain rate sensitivity (SRS), strain rate work hardening (SRWH) in Co–35Ni–20Cr–10Mo alloy (MP35N) wires, subjected to drawing practices namely full die drawing (FDD) and half die drawing (HDD). The experimental results illustrate that the strength, and SRWH, of the drawn wires, increased with the rise of SR, whereas the SRS(m) and the ductility decreased with the increase of strain rate (10−6 s−1 to 10−2 s−1). However, the relative strength, hardening, and the m values were observed to be higher in the FDD drawn wire when compared to the HDD drawn wire. The increase in strength and hardening rate of the FDD drawn wire with the rise in SR was ascribed to increased dislocation density and reduced twin thickness, and the increased SRS and ductility at low SR were attributed to the increased grain boundary (GB) activities. The HDD drawn wire had a relatively lower strength, SRWH and SRS rate at an SR of 10−6 s−1 when compared to other SR, this was attributed to plastic flow localization, which led to the formation of shear bands in the material. An abnormal SRWH was observed in the HDD drawn wire tested to an SR of 10−2 s−1, where a Stage II hardening peak was observed at a very high strain, this was attributed to the solute segregation of the Mo atoms to the GB.

Keywords

Strain rate Strain rate sensitivity Strain rate hardening Wire drawing MP35N alloy 

Notes

Acknowledgements

This work was supported financially by EDB (Economic Development Board) Singapore (COY-15-IPP-140010/198501914Z) under the EDB-IPP scheme through a grant to Heraeus Materials Singapore Pte Ltd Singapore.

References

  1. 1.
    Q. Wei, J. Mater. Sci. 42, 1709–1727 (2007)CrossRefGoogle Scholar
  2. 2.
    U. Kocks, Mater. Sci. Eng. A 317, 181–187 (2001)CrossRefGoogle Scholar
  3. 3.
    R.J. Asaro, S. Suresh, Acta Mater. 53, 3369–3382 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Klepaczko, C. Chiem, J. Mech. Phys. Solids. 34, 29–54 (1986)CrossRefGoogle Scholar
  5. 5.
    S. Yan, H. Yang, H. Li, X. Yao, J. Alloys Compd. 688, 776–786 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Conrad, Mater. Sci. Eng. A 341, 216–228 (2003)CrossRefGoogle Scholar
  7. 7.
    H. Li, Y. Liang, L. Zhao, J. Hu, S. Han, J. Lian, J. Alloys Compd. 709, 566–574 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Rodriguez, Metall. Mater. Trans. A 35, 2697–2705 (2004)CrossRefGoogle Scholar
  9. 9.
    Q. Wei, S. Cheng, K. Ramesh, E. Ma, Mater. Sci. Eng. A 381, 71–79 (2004)CrossRefGoogle Scholar
  10. 10.
    G.T. Gray III, Annu. Rev. Mater. Res. 42, 285–303 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Armstrong, S. Walley, Int. Mater. Rev. 53, 105–128 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, E. Ma, Acta Mater. 52, 1699–1709 (2004)CrossRefGoogle Scholar
  13. 13.
    H. Yang, Z. Zhang, F. Dong, Q. Duan, Z. Zhang, Mater. Sci. Eng. A 607, 551–558 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Liang, X. Wang, W. Huang, M. Huang, Acta Mater. 88, 170–179 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Bintu, G. Vincze, C.R. Picu, A.B. Lopes, J.J. Grácio, F. Barlat, Mater. Sci. Eng. A 629, 54–59 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Yang, Y. Tian, Z. Zhang, Z. Zhang, Mater. Sci. Eng. A 655, 251–255 (2016)CrossRefGoogle Scholar
  17. 17.
    E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30, 1223–1233 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Asgari, J. Mater. Process. Technol. 155–156, 1905–1911 (2004)CrossRefGoogle Scholar
  19. 19.
    E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Int. J. Plast. 17, 1245–1265 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28, 1781–1795 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Chiba, X. Li, M. Kim, Philos. Mag. A 79, 1533–1554 (1999)CrossRefGoogle Scholar
  22. 22.
    S. Asgari, E. El-Danaf, E. Shaji, S. Kalidindi, R. Doherty, Acta Mater. 46, 5795–5806 (1998)CrossRefGoogle Scholar
  23. 23.
    R.N. Wright, Wire Technology.[Electronic Resource]: Process Engineering and Metallurgy (Elsevier, Amsterdam, 2011), p. c2011Google Scholar
  24. 24.
    S.S. Gvk, M.J. Tan, Z. Liu, Mater. Sci. Eng. A 713, 94–104 (2018)CrossRefGoogle Scholar
  25. 25.
    S.S. Gvk, M.J. Tan and Z. Liu, J. Mater. Eng. Perform. (2018).  https://doi.org/10.1007/s11665-018-3755-2
  26. 26.
    ASTM A931-18. (2018). Standard Test Method for Tension Testing of Wire Ropes and Strand, ASTM International, West Conshohocken, PA.  https://doi.org/10.1520/A0931-18
  27. 27.
    A. Ghosh, Mater. Sci. Eng. A 463, 36–40 (2007)CrossRefGoogle Scholar
  28. 28.
    R.M. Langford, Microsc. Res. Tech. 69, 538–549 (2006)CrossRefGoogle Scholar
  29. 29.
    L.A. Giannuzzi, F.A. Stevie, Micron. 30, 197–204 (1999)CrossRefGoogle Scholar
  30. 30.
    P.R. Munroe, Mater. Char. 60, 2–13 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Li, T. Malis, S. Dionne, Mater. Charact. 57, 64–70 (2006)CrossRefGoogle Scholar
  32. 32.
    G.E. Dieter, D.J. Bacon, Mechanical metallurgy. (McGraw-Hill, London, 1988), SI metric ed./adapted by David BaconGoogle Scholar
  33. 33.
    H. Van Swygenhoven, A. Caro, Phys. Rev. B 58, 11246 (1998)CrossRefGoogle Scholar
  34. 34.
    P. Derlet, A. Hasnaoui, H. Van Swygenhoven, Scripta Mater. 49, 629–635 (2003)CrossRefGoogle Scholar
  35. 35.
    R. Armstrong, F. Zerilli, Mech. Mater. 17, 319–327 (1994)CrossRefGoogle Scholar
  36. 36.
    D. Jia, K. Ramesh, E. Ma, Acta Mater. 51, 3495–3509 (2003)CrossRefGoogle Scholar
  37. 37.
    E. Orowan, Proc. Phys. Soc. 52, 8 (1940)CrossRefGoogle Scholar
  38. 38.
    D. Farkas, H. Van Swygenhoven, P. Derlet, Phys. Rev. B 66, 060101 (2002)CrossRefGoogle Scholar
  39. 39.
    A. Hasnaoui, H. Van Swygenhoven, P. Derlet, Science 300, 1550–1552 (2003)CrossRefGoogle Scholar
  40. 40.
    E. Ma, Nat. Mater. 2, 7 (2003)CrossRefGoogle Scholar
  41. 41.
    E. Ma, Scripta Mater. 49, 663–668 (2003)CrossRefGoogle Scholar
  42. 42.
    T. Nguyen-Minh, J. Sidor, R. Petrov and L. Kestens, IOP Conference Series: Materials Science and Engineering, 012023, IOP PublishingGoogle Scholar
  43. 43.
    I. Dillamore, J. Roberts, A. Bush, Metal. Sci. 13, 73–77 (1979)CrossRefGoogle Scholar
  44. 44.
    D.L. Holt, J. Appl. Phys. 41, 3197–3201 (1970)CrossRefGoogle Scholar
  45. 45.
    F. Huang, N. Tao, J. Mater. Sci. Technol. 27, 1–7 (2011)CrossRefGoogle Scholar
  46. 46.
    C. Zener, J. Hollomon, J. Appl. Phys. 17, 69–82 (1946)CrossRefGoogle Scholar
  47. 47.
    L. Lu, Z. You, K. Lu, Scripta Mater. 66, 837–842 (2012)CrossRefGoogle Scholar
  48. 48.
    X. Chen, L. Lu, Scripta Mater. 57, 133–136 (2007)CrossRefGoogle Scholar
  49. 49.
    Standard Specification for Wrought 35Cobalt-35Nickel-20Chromium-10Molybdenum Alloy for Surgical Implant Applications (UNS R30035)Google Scholar
  50. 50.
    S. Pennycook, Adv. Imaging Electron Phys. 123, 173–206 (2002)CrossRefGoogle Scholar
  51. 51.
    U. Messerschmidt, Dislocation dynamics during plastic deformation (Springer, Berlin, 2010)CrossRefGoogle Scholar
  52. 52.
    R. E. Reed-Hill. (1973). Physical metallurgy principles. [s.l.] : New York : Van NostrandGoogle Scholar
  53. 53.
    D. Harries, A. Marwick, Phil. Trans. R. Soc. Lond. A 295, 197–207 (1980)CrossRefGoogle Scholar
  54. 54.
    M. Bugnet, A. Kula, M. Niewczas, G. Botton, Acta Mater. 79, 66–73 (2014)CrossRefGoogle Scholar
  55. 55.
    J. Hadorn, T. Sasaki, T. Nakata, T. Ohkubo, S. Kamado, K. Hono, Scripta Mater. 93, 28–31 (2014)CrossRefGoogle Scholar
  56. 56.
    X. Shao, Z. Peng, Q. Jin, X. Ma, Acta Mater. 118, 177–186 (2016)CrossRefGoogle Scholar
  57. 57.
    B. Yang, Y. Zhou, D. Chen, X. Ma, Sci. Rep. 3, 1039 (2013)CrossRefGoogle Scholar
  58. 58.
    X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin, R. Valiev, Adv. Eng. Mater. 14, 968–974 (2012)CrossRefGoogle Scholar
  59. 59.
    L. Zhou, G. Liu, X. Ma, K. Lu, Acta Mater. 56, 78–87 (2008)CrossRefGoogle Scholar
  60. 60.
    X. Bian, F. Yuan, X. Wu, Mater. Sci. Eng. A 696, 220–227 (2017)CrossRefGoogle Scholar
  61. 61.
    K.V. Ivanov, E.V. Naydenkin, Scripta Mater. 66, 511–514 (2012)CrossRefGoogle Scholar
  62. 62.
    X.-S. Yang, Y.-J. Wang, G.-Y. Wang, H.-R. Zhai, L. Dai, T.-Y. Zhang, Acta Mater. 108, 252–263 (2016)CrossRefGoogle Scholar
  63. 63.
    P. Kumar, C. Xu, T.G. Langdon, J. Mater. Sci. 44, 3913–3916 (2009)CrossRefGoogle Scholar
  64. 64.
    M. Wang, A. Shan, J. Alloys Compd. 455, L10–L14 (2008)CrossRefGoogle Scholar
  65. 65.
    Y. Wang, E. Ma, Appl. Phys. Lett. 83, 3165–3167 (2003)CrossRefGoogle Scholar
  66. 66.
    J. Ye, Y. Wang, T. Barbee Jr., A. Hamza, Appl. Phys. Lett. 100, 261912 (2012)CrossRefGoogle Scholar
  67. 67.
    Y. Shen, L. Lu, M. Dao, S. Suresh, Scripta Mater. 55, 319–322 (2006)CrossRefGoogle Scholar
  68. 68.
    S. Walley, Metall. Mater. Trans. A 38, 2629–2654 (2007)CrossRefGoogle Scholar
  69. 69.
    M. Aghaie-Khafri, R. Mahmudi, JOM. 50, 50–52 (1998)CrossRefGoogle Scholar
  70. 70.
    F. Wang, B. Li, T. Gao, P. Huang, K. Xu, T. Lu, Surf. Coat. Technol. 228, S254–S256 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Research and DevelopmentHeraeus Materials Singapore Pte LtdSingaporeSingapore

Personalised recommendations