Rapid Consolidation Mechanism of Titanium Aluminide Solid Compact via Electric Discharging Through Elemental Ti and Al Powder Mixture

  • H. S. Jang
  • C. J. Van Tyne
  • W. H. LeeEmail author


Elemental Ti and Al powders were milled and mixed as starting materials for the synthesis of titanium aluminide solid compacts by using the electric discharge sintering (EDS) technique. The polycrystalline compact with near full-density (> 99.6%) and the main phase of Ti3Al was produced in 170 μs by the EDS. In the early stage of electric discharging, the generated heat at the interface of metal and oxide film created an explosive force, inducing a dielectric breakdown of inherent oxide film. Once the oxide film was removed and the metals were melt, the formation of necks at the clean contact points occurred and the inter-diffusion between Ti and Al in liquid phase was initiated at the metallic contact areas with sequent alloying into an amorphous Ti3Al. During the full alloying and substantial neck growth, the heat dissipated through the mold, causing the crystallization of Ti3Al. During the EDS, pinch pressure (24–68 MPa) was also generated, which can densify the EDS compact. The fine microstructure, higher density, and greater hardness of EDS compact were results of the shorter exposure time to a high temperature and the generated pinch pressure, causing a higher densification and constrained grain growth, compared to conventional powder metallurgy methods.


Titanium aluminide Phase transformation Sintering Microstructure Electric discharge 



This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (NRF-2017R1A2B1011226).


  1. 1.
    A.H. Assari, B. Eghbali, Met. Mater. Int. 22, 915 (2016)CrossRefGoogle Scholar
  2. 2.
    M.-P. Bacos, M. Perrut, D. Boivin, N. Horezan, E. Rimpot, C. Rio, C. Sanchez, Intermetallics 94, 29 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Martins, F. Grumbach, A. Simoulin, P. Sallot, K. Mocellin, M. Bellet, C. Estournes, Mater. Sci. Eng. A 711, 313 (2018)CrossRefGoogle Scholar
  4. 4.
    J.K. Han, X. Li, R. Dippenaar, K.D. Liss, M. Kawasaki, Mater. Sci. Eng. A 714, 84 (2018)CrossRefGoogle Scholar
  5. 5.
    A.L. Gloanec, T. Milani, G. Henaff, Int. J. Fatigue 32, 1015 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Appel, J.D.H. Paul, P. Staron, M. Oehring, O. Kolednik, J. Predan, F.D. Fischer, Mater. Sci. Eng. A 709, 17 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Cui, C. Cui, J. Xie, S. Liu, J. Shi, Sci. Rep. 8, 2364 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Kastenhuber, T. Klein, H. Clemens, S. Mayer, Intermetallics 97, 27 (2018)CrossRefGoogle Scholar
  9. 9.
    B.C. Cheng, G.B. Hyeon, Met. Mater. Int. 24, 35 (2018)CrossRefGoogle Scholar
  10. 10.
    N.G. Razumov, A.A. Popovich, Q.S. Wang, Met. Mater. Int. 24, 363 (2018)CrossRefGoogle Scholar
  11. 11.
    B. Gabbitas, P. Cao, S. Raynova, D. Zhang, J. Mater. Sci. 47, 1234 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Schoenitz, X. Zhu, E.L. Dreizin, Scripta Mater. 53, 1095 (2005)CrossRefGoogle Scholar
  13. 13.
    K. Matsugi, N. Ishibashi, T. Hatayama, O. Yanagisawa, Intermetallics 4, 457 (1996)CrossRefGoogle Scholar
  14. 14.
    R. Munnoz-Moreno, E.M. Ruiz-Navas, B. Srinivasarao, J.M. Torralba, J. Mater. Sci. Technol. 30, 1145 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Sina, K.B. Surreddi, S. Iyengar, J. Alloys Compd. 661, 294 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, C. Guo, S. Zhu, N. Wei, R.A. Javed, F. Jiang, Mater. Sci. Eng. A 637, 235 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Van Minh, Y. Konyukhov, G. Karunakaran, D. Ryzhonkov, T. Duong, S. Kotov, D. Kuznetsov, Met. Mater. Int. 23, 532 (2017)CrossRefGoogle Scholar
  18. 18.
    H.S. Kwon, M. Leparoux, A. Kawasaki, J. Mater. Sci. Technol. 30, 736 (2014)CrossRefGoogle Scholar
  19. 19.
    K.J. Park, J.H. Park, H.S. Kwon, J. Alloys Compd. 739, 311 (2018)CrossRefGoogle Scholar
  20. 20.
    O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015)CrossRefGoogle Scholar
  21. 21.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Adv. Eng. Mater. 16, 830 (2014)CrossRefGoogle Scholar
  22. 22.
    M.A. Lagos, I. Agote, Intermetallics 36, 51 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Delaizir, G. Bernard-Grnger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, Mater. Res. Bull. 47, 1954 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.J. Jo, Y.H. Jo, J.G. Seong, Y.H. Kim, S.Y. Chang, W.H. Lee, Mater. Sci. Technol. 31, 989 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Clyens, S.T.S. Al-Hassani, W. Johnson, Int. J. Mech. Sci. 18, 37 (1976)CrossRefGoogle Scholar
  26. 26.
    W.H. Lee, D.A. Puleo, J. Mater. Sci. Lett. 18, 817 (1999)CrossRefGoogle Scholar
  27. 27.
    PDF#52-0859, PCPDFWIN-International Centre for Diffraction Data. (2001)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulKorea
  2. 2.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA

Personalised recommendations