Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 814–820 | Cite as

Microstructure and Hydrogen Absorption Properties of a BCC Phase Accompanied Laves Alloy

  • Yunlong ZhangEmail author
  • Tiebang Zhang
  • Jinshan Li
  • Ruolin Li
  • Yun Yu
  • Yalin Lu
Article
  • 67 Downloads

Abstract

A non-stoichiometry Zr0.7Ti0.4V1.5Cr0.4 alloy has been synthesized by arc melting following annealing treatment or melt-spinning to obtain the bulk and ribbon samples, respectively. XRD investigation reveals the multiphase structure consisting of C15-Laves, V-BCC and a small amount of α-Zr or Zr3V3O. The alloy shows easy activation and fast hydrogenation kinetics. The annealed alloy absorbs 2.51 wt% H at room temperature, higher than the melt-spun ribbons. Refined grains by melt-spinning accelerates the hydrogenation of bulk alloy. The absorption behavior in presence of 1 mol% air has been tested to evaluate the anti-poisoning ability. Pressure–composition–temperature characteristics and thermodynamics parameters indicate the low equilibrium pressure and high hydrides stability. Hydrides investigation reveals that the Laves phase dominant multiphase structure contributes to the enhanced hydrogen capacity and multi-stage hydrogen release in DSC curve.

Keywords

Hydrogen absorption Zr-based alloy Laves phase BCC phase Melt-spun 

Notes

Acknowledgements

This work is supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201848).

References

  1. 1.
    H.Y. Hang, Int. J. Energy Res. 37, 683–685 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Karsten, A. Wolfgang, Energy Technol. 1, 501–511 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, T. Zhai, B. Li, H. Ren, W. Bu, D. Zhao, J. Mater. Sci. Technol. 30, 1020–1026 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, G. Huang, Z. Yuan, H. Shang, Y. Qi, S. Guo, Mater. Sci. Eng. B 225, 1–9 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Young, J. Koch, T. Ouchi, A. Banik, M.A. Fetcenko, J. Alloys Compd. 496, 669–677 (2010)CrossRefGoogle Scholar
  6. 6.
    M.V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Int. J. Hydrogen Energy 39, 5818–5851 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Cao, L. Ouyang, H. Wang, J. Liu, L. Sun, M. Felderhoff, M. Zhu, Int. J. Hydrogen Energy 41, 11242–11253 (2016)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, X. Xiao, L. Chen, X. Fan, L. Liu, S. Li, H. Ge, Q. Wang, Int. J. Hydrogen Energy 38, 12803–12810 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Bhattacharyya, S. Mohan, Renew. Sustain. Energy Rev. 41, 872–883 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Glugla, D.K. Murdoch, A. Antipenkov, S. Beloglazov, I. Cristescu, I.R. Cristescu, C. Day, R. Laesser, A. Mack, Fus. Eng. Des. 81, 733–744 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Bereznitsky, D. Mogilyanski, I. Jacob, J. Alloys Compd. 542, 213–217 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, X. Xue, J. Alloys Compd. 694, 300–308 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.L. Zhang, J.S. Li, T.B. Zhang, H.C. Kou, R. Hu, X.Y. Xue, Int. J. Hydrogen Energy 39, 19637–19645 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Suwarno, J.K. Solberg, V.A. Yartys, B. Krogh, J. Alloys Compd. 509, S775–S778 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloys Compd. 509, S640–S645 (2011)CrossRefGoogle Scholar
  16. 16.
    R.R. Shahi, T.P. Yadav, M.A. Shaz, O.N. Srivastava, S. van Smaalen, Int. J. Hydrogen Energy 36, 592–599 (2011)CrossRefGoogle Scholar
  17. 17.
    X.B. Han, Y. Qian, W. Liu, D.M. Chen, K. Yang, J. Mater. Sci. Technol. 32, 1332–1338 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Taizhong, W. Zhu, F. Shanglong, X. Baojia, X. Naixin, Mater. Sci. Eng. A 390, 362–365 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.-H. Zhang, B.-W. Li, H.-P. Ren, X. Li, Y. Qi, D.-L. Zhao, Materials 4, 274 (2011)CrossRefGoogle Scholar
  20. 20.
    F. Cuevas, B. Villeroy, E. Leroy, P. Olier, M. Latroche, J. Alloys Compd. 446–447, 218–223 (2007)CrossRefGoogle Scholar
  21. 21.
    I.Y. Zavaliy, J. Alloys Compd. 291, 102–109 (1999)CrossRefGoogle Scholar
  22. 22.
    X.W. Yang, J.S. Li, T.B. Zhang, R. Hu, X.Y. Xue, H.Z. Fu, Int. J. Hydrogen Energy 36, 9318–9323 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Kou, W. Luo, Z. Huang, G. Sang, C. Hu, C. Chen, G. Zhang, D. Luo, M. Liu, S. Zheng, Int. J. Hydrogen Energy 41, 10811–10818 (2016)CrossRefGoogle Scholar
  24. 24.
    T.B. Zhang, X.W. Yang, J.S. Li, R. Hu, X.Y. Xue, H.Z. Fu, J. Power Sources 202, 217–224 (2012)CrossRefGoogle Scholar
  25. 25.
    G. Srinivas, V. Sankaranarayanan, S. Ramaprabhu, Int. J. Hydrogen Energy 32, 2480–2487 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Beremitsky, I. Jacob, J. Bloch, M.H. Mintz, J. Alloys Compd. 346, 217–221 (2002)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, J. Li, T. Zhang, H. Kou, R. Hu, X. Xue, Energy 114, 1147–1154 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Young, B. Chao, L.A. Bendersky, K. Wang, J. Power Sources 218, 487–494 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Luo, C.N. Park, T.B. Flanagan, J. Alloys Compd. 384, 208–216 (2004)CrossRefGoogle Scholar
  30. 30.
    A.K.M.F. Kibria, Y. Sakamoto, Int. J. Hydrogen Energy 24, 47–52 (1999)CrossRefGoogle Scholar
  31. 31.
    T.B. Flanagan, J.D. Clewley, J. Less-Common Met. 83, 127–141 (1982)CrossRefGoogle Scholar
  32. 32.
    T.A. Zotov, R.B. Sivov, E.A. Movlaev, S.V. Mitrokhin, V.N. Verbetsky, J. Alloys Compd. 509, S839–S843 (2011)CrossRefGoogle Scholar
  33. 33.
    X. Hou, R. Hu, T. Zhang, H. Kou, J. Li, J. Power Sources 306, 437–447 (2016)CrossRefGoogle Scholar
  34. 34.
    K. Young, T. Ouchi, J. Nei, L. Wang, J. Alloys Compd. 654, 216–225 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Jain, R.K. Jain, S. Agarwal, I.P. Jain, Int. J. Hydrogen Energy 32, 2445–2449 (2007)CrossRefGoogle Scholar
  36. 36.
    T. Zhang, Y. Zhang, J. Li, H. Kou, R. Hu, X. Xue, Mater. Charact. 111, 53–59 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, J. Alloys Compd. 291, 295–299 (1999)CrossRefGoogle Scholar
  38. 38.
    T. Wu, X. Xue, T. Zhang, R. Hu, H. Kou, J. Li, J. Alloys Compd. 645, 358–368 (2015)CrossRefGoogle Scholar
  39. 39.
    L. Peng, C. Jiang, Q. Xu, X. Wu, Fus. Eng. Des. 88, 299–303 (2013)CrossRefGoogle Scholar
  40. 40.
    Y. Zhang, J. Li, T. Zhang, H. Kou, X. Xue, Int. J. Hydrogen Energy 42, 10109–10116 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yunlong Zhang
    • 1
    Email author
  • Tiebang Zhang
    • 2
  • Jinshan Li
    • 2
  • Ruolin Li
    • 1
  • Yun Yu
    • 1
  • Yalin Lu
    • 1
  1. 1.Department of Materials EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations