Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 219–228 | Cite as

Liquid Metal Embrittlement of Resistance Spot Welded 1180 TRIP Steel: Effect of Electrode Force on Cracking Behavior

  • Du-Youl Choi
  • Ashutosh Sharma
  • Sang-Ho Uhm
  • Jae Pil JungEmail author
Article

Abstract

Liquid metal embrittlement (LME) caused cracking of Galvanized transformation induced plasticity steels was investigated during resistance spot welding (RSW). Effect of electrode force (3–5 kN) for a weld time of 400, and 800 ms on crack resistance of TRIP steel was examined in relation to LME phenomenon. The microstructural characteristics of spot weld joints and LME cracking tendency were investigated using dye penetration tests, optical microscopy, scanning electron microscopy together with energy dispersive X-ray spectroscopy. It was found that as the electrode force increases, the crack size decreases due to a fast increase in crack tip temperature which rises further with more holding time up to 800 ms in high temperature zone. Least amount of crack size was observed at 5 kN electrode force and 400 ms of welding time. Finally, the experimental results have also been simulated by finite element modeling (FEM) to find suitable mechanism of crack formation, and a combination of 4 kN and 400 ms was suggested for the crack free and less thermal deformation in the spot welded TRIP steel.

Keywords

LME Spot welding TRIP steel Crack Force Nugget Weld 

References

  1. 1.
    M. Ma, H. Lu, in Proceedings of the FISITA 2012 World Automotive Congress:Vehicle Design and Testing, Lecture Notes in Electrical Engineering, vol 196 (Springer, Heidelberg, 2013), p. 965–975Google Scholar
  2. 2.
    Ö. N. Cora, M. Koç, in Abstracts of the Proceedings of the Otomotiv Teknolojileri Kongresi, OTEKON’14, Busra, Turkey, 26–27 May 2014Google Scholar
  3. 3.
    M. Takahashi, Nippon Steel Technical report No. 88, 1–7 Jul 2003Google Scholar
  4. 4.
    J. Kasperek, D. Verchere, D. Jacquet, N. Phillips, Mater. Chem. Phys. 56, 205 (1998)CrossRefGoogle Scholar
  5. 5.
    E.A. Alvarenga, V.F.C. Lins, Surf. Coat. Technol. Part B 306, 428 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Ding, Z.-H. Gong, B.-F. Wang, D. Tang, H.-T. Jiang, J. Iron. Steel Res. Int. 21, 527 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Chatterjee, Dissertation, University of Cambridge, 2006Google Scholar
  8. 8.
    C. Beal, X. Kleber, D. Fabregue, M. Bouzekri, Scr. Mater. 66, 1030 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Militisky, E. Pakalnins, C. Jiang, A. K. Thompson, in Abstracts of the Proceedings On SAE 2003 World Congress, Michigan, USA, March 2003Google Scholar
  10. 10.
    C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, E. Biro, Mater. Sci. Eng. A 485, 334 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Kondo, T. Konishi, K. Nomura, H. Kokawa, J. Japan Weld. Soc. 27, 230 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Feulvarch, P. Rogeon, P. Carré, V. Robin, G. Sibilia, J.M. Bergheau, Int. J. Comput. Methods 49, 345 (2006)Google Scholar
  13. 13.
    A.R. Zak, M.L. Williams, J. Appl. Mech. 30, 142 (1963)CrossRefGoogle Scholar
  14. 14.
    J. Ahmad, J. Appl. Mech. 58, 964 (1991)CrossRefGoogle Scholar
  15. 15.
    W.C. Wang, J.T. Chen, J. Strain Anal. 28, 53 (1993)CrossRefGoogle Scholar
  16. 16.
    Resistance Welding-Spot Welding Electrode Caps, ISO-5821: 2009. (AEG-SVS-Schweiss-Technik, GmbH, 2009), https://www.iso.org/standard/45871.html. Accessed 2 Dec 2017
  17. 17.
    Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, ANSI/AWS D8, 9 M. (American Welding Society, Miami, 2012), https://pubs.aws.org/p/1067/d89m2012-test-methods-for-evaluating-the-resistance-spot-welding-behavior-of-automotive-sheet-steel-materials. Accessed 10 Dec 2017
  18. 18.
    T. Endramawan, A. Sifa, IOP Conf. Ser. Mater. Sci. Eng. 306, 012122 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Charde, Sadhana 39, 1563 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Cho, H. Kang, C. Lee, B.C.D. Cooman, Scr. Mater. 90–91, 25 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Coni, M.L. Gipiela, A.S.C.M. D’Oliveira, P.V.P. Marcondes, J. Braz. Soc. Mech. Sci. Eng. 31(4), 319 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Tumuluru, Weld. J. 86, 161 (2007)Google Scholar
  23. 23.
    M. Kondo, T. Konishi, K. Nomura, H. Kokawa, Sci. Technol. Weld. Join. 15, 76 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Zhou, L. Cai, J. Appl. Phys. 116, 084902 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Ashiri, M.A. Haque, C.-W. Ji, M. Shamanian, H.R. Salimijazi, Y.-D. Park, Scr. Mater. 109, 6 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Du-Youl Choi
    • 1
    • 3
  • Ashutosh Sharma
    • 2
  • Sang-Ho Uhm
    • 3
  • Jae Pil Jung
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulRepublic of Korea
  2. 2.Department of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea
  3. 3.Welding and Joining Research GroupPOSCOIncheonRepublic of Korea

Personalised recommendations