Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 257–267 | Cite as

Production of High-Grade Titanium Dioxide Directly from Titanium Ore Using Titanium Scrap and Iron Chloride Waste

  • Jungshin KangEmail author
  • Gyeonghye Moon
  • Min-Seuk Kim
  • Toru H. Okabe
Article
  • 85 Downloads

Abstract

In order to produce high-grade titanium dioxide (95% TiO2) directly from a titanium ore using titanium scrap and iron chloride waste, chlorine recovery and selective chlorination processes were investigated. The mixture of titanium scrap and ferrous chloride in carbon crucible and titanium ore in quartz crucible were placed inside gas-tight quartz tube. The experiments were conducted at 1193–1248 K. Titanium tetrachloride and metallic iron were produced by the chlorination of titanium scrap in the carbon crucible, and the chlorination ratio of titanium chip was 94.6%. In the quartz crucible, 96.2% TiO2 was obtained under certain conditions by the selective removal of iron from the ore because of the reaction with the generated TiCl4. The iron removal ratio of titanium ore was 98.2%. Therefore, the feasibility of the effective use of titanium scrap and iron chloride waste for upgrading titanium ore was demonstrated in this study.

Keywords

Titanium scrap Iron chloride Titanium ore Synthetic rutile Selective chlorination Chlorine recovery 

Notes

Acknowledgements

The authors are grateful to Dr. Soo Bok Jeong, Dr. Hanjung Kwon, and Mr. Susumu Kosemura for the supply of samples throughout this study. In addition, the authors thank Ms. Ahram Moon and Ms. Gahee Kim for their technical assistance. Furthermore, the authors are grateful to all the members of the Geoanalysis Department of KIGAM for their technical assistance. This research was partially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910) and the Basic Research Project (18-3212) of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

Supplementary material

12540_2018_175_MOESM1_ESM.pptx (1.4 mb)
Supplementary material 1 (PPTX 1458 kb)

References

  1. 1.
    U.S. Geological Survey, Mineral Commodity Summaries 2016 (U.S. Geological Survey, Virginia, 2016), pp. 178–179Google Scholar
  2. 2.
    R.G. Becher, R.G. Canning, B.A. Goodheart, S. Uusna, Proc. Aust. Inst. Min. Metall. 21, 21 (1965)Google Scholar
  3. 3.
    J.H. Chen, L.W. Huntoon, United States Patent 4019898 (1977)Google Scholar
  4. 4.
    J.H. Chen, United States Patent 3967954 (1976)Google Scholar
  5. 5.
    J.H. Chen, United States Patent 3825419 (1974)Google Scholar
  6. 6.
    M. Guéguin, F. Cardarelli, Miner. Process. Extr. Metall. Rev. 28, 1 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Kroll, Trans. Electrochem. Soc. 78, 35 (1940)CrossRefGoogle Scholar
  8. 8.
    M.K. Akhtar, Y. Xiong, S.E. Pratsinis, AIChE J. 37, 1561 (1991)CrossRefGoogle Scholar
  9. 9.
    M.K. Akhtar, S. Vemury, S.E. Pratsinis, AIChE J. 40, 1183 (1994)CrossRefGoogle Scholar
  10. 10.
    T.H. Okabe, J. Kang, The Latest Technological Trend of Rare Metals, ed. by T.H. Okabe, K. Nose (CMC Publishing Co., Ltd., Tokyo, 2012), pp. 83–94Google Scholar
  11. 11.
    W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108, 177 (2011)CrossRefGoogle Scholar
  12. 12.
    K.I. Rhee, H.Y. Sohn, Metall. Mater. Trans. B 21, 341 (1990)CrossRefGoogle Scholar
  13. 13.
    S. Fukushima, E. Kimura, Titanium · Zirconium, vol: 23 (1975), p. 67Google Scholar
  14. 14.
    E. Kimura, A. Fuwa, S. Fukushima, Nippon Kogyo Kaishi 95, 18 (1979)Google Scholar
  15. 15.
    A. Fuwa, E. Kimura, S. Fukushima, Metall. Mater. Trans. B 9, 643 (1978)CrossRefGoogle Scholar
  16. 16.
    K.I. Rhee, H.Y. Sohn, Metall. Mater. Trans. B 21, 321 (1990)CrossRefGoogle Scholar
  17. 17.
    L.K. Doraiswamy, H.C. Bijawat, M.V. Kunte, Chem. Eng. Prog. 55, 80 (1959)Google Scholar
  18. 18.
    Y. Son, R. Ring, H.-S. Sohn, J. Korean Inst. Resour. Recycl. 25, 74 (2016)Google Scholar
  19. 19.
    H. Zheng, T.H. Okabe, in Proceedings of 16th Iketani Conference, Masuko Symposium, ed. by S. Yamaguchi. The 16th Iketani Conference Organizing Committee (2006), pp. 1005–1010Google Scholar
  20. 20.
    R. Matsuoka, T.H. Okabe, in Proceeding Symposium on Metallurgical Technology for Waste Minimization, 134th TMS Annual Meeting (San Francisco, 2005). http://www.okabe.iis.u-tokyo.ac.jp/japanese/for_students/parts/pdf/050218_TMS_proceedings_matsuoka.pdf
  21. 21.
    J. Kang, T.H. Okabe, Metall. Mater. Trans. B 44B, 516 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Kang, T.H. Okabe, Metall. Mater. Trans. B 48B, 294 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Kang, T.H. Okabe, Mater. Trans. 54, 1444 (2013)CrossRefGoogle Scholar
  24. 24.
    D.F. Othmer, United States Patent 3859077 (1975)Google Scholar
  25. 25.
    D.F. Othmer, R. Nowak, AIChE J. 18, 217 (1972)CrossRefGoogle Scholar
  26. 26.
    D.F. Othmer, United States Patent 3989510 (1976)Google Scholar
  27. 27.
    J. Kang, T.H. Okabe, Mater. Trans. 55, 591 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Kang, T.H. Okabe, Int. J. Miner. Process. 149, 111 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Kang, T.H. Okabe, Metall. Mater. Trans. B 47B, 320 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Zheng, T.H. Okabe, J. Alloys Compd. 461, 459 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Taninouchi, Y. Hamanaka, T.H. Okabe, Mater. Trans. 56, 1 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Hamanaka, M.Sc. Thesis, (The University of Tokyo, Tokyo, 2015), pp. 139–143Google Scholar
  33. 33.
    I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH Verlagsgesellschaft mbH, Weinheim, 1995)CrossRefGoogle Scholar
  34. 34.
    J. Kang, T.H. Okabe, Metall. Mater. Trans. B 45B, 1260 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Strategic Minerals Utilization Research DepartmentKorea Institute of Geoscience and Mineral ResourcesDaejeonRepublic of Korea
  2. 2.Department of Resources RecyclingUniversity of Science and TechnologyDaejeonRepublic of Korea
  3. 3.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  4. 4.Resources Recovery Research CenterKorea Institute of Geoscience and Mineral ResourcesDaejeonRepublic of Korea

Personalised recommendations