Metals and Materials International

, Volume 25, Issue 1, pp 18–33 | Cite as

Unsteady-State Horizontal Solidification of an Al–Si–Cu–Fe Alloy: Relationship Between Thermal Parameters and Microstructure with Mechanical Properties/Fracture Feature

  • Fabricio A. Souza
  • Igor A. Magno
  • Marlo O. Costa
  • André S. Barros
  • Jacson M. Nascimento
  • Diego B. Carvalho
  • Otávio L. RochaEmail author


Aluminum casting alloys have properties which are of great industrial interest, such as low density, good corrosion resistance, high thermal and electrical conductivities, good combination of mechanical properties, good workability in machining processes and mechanical forming. Currently, these alloys are produced in various systems and dozens of compositions. In this investigation, a mutual interaction of thermal parameters, scale of the dendritic microstructure, intermetallic compounds (IMCs), microhardness and tensile properties/fracture characteristics of a casting Al–7wt%Si–3wt%Cu–0.3wt%Fe alloy was analyzed. Solidification experiments were developed using a furnace that promoted horizontal growth under transient heat flow conditions. Then, growth rate (VL), cooling rate (CR), and local solidification time (tSL) were determined from measured temperature profiles. Secondary dendritic spacings (λ2), Si particles, Fe-rich and Al2Cu intermetallic phases were characterized by optical and SEM microscopy, as well as the area mapping and point-wise EDS microanalysis. Hence, the interrelations involving Vickers microhardness (HV), yield strength (σYS), ultimate tensile strength (σUTS) and elongation (E%) with microstructural features were evaluated by mathematical equations. IMCs as well as morphologies of Si were also analyzed in the fracture regions. In addition, the experimental growth law of λ2 = f(tSL) proposed in this study was compared with a predictive theoretical model reported in the literature for multicomponent alloys. It was observed that areas that tend to grow faster (lowest λ2 values) were associated with the highest σUTS and E% values, while HV and σYS properties were not affected by the thermal and microstructural parameters (CR and λ2). In addition, less extensive cleavage planes accompanied by small dimples in were observed in fractured samples with lower λ2 values.


AlSiCuFe multicomponent alloys Horizontal solidification Thermal and microstructural parameters Mechanical properties 



The authors acknowledge the financial support provided by IFPA - Federal Institute of Education, Science and Technology of Pará, UFPA - Federal University of Pará, and CNPq – The Brazilian Research Council (Grants 302846/2017-4 and 400634/2016-3), FAPESPA – Amazon Foundation of Support to Study and Research (Grant ICAAF 064/2016) and CAPES - Coordination of Superior Level Staff Improvement, Brazil.


  1. 1.
    I.J. Polmear, in Light Alloys: From Traditional Alloys to Nanocrystals, 4th edn. (Elsevier Butterworth-Heinemann, Amsterdam, 2006)Google Scholar
  2. 2.
    B. Altshuller, P.B. Dickerson, R.L. Heflin, in Aluminum Brazing Handbook, 4th edn. (The Aluminum Association Inc, Washington, 1990)Google Scholar
  3. 3.
    A.H. Musfirah, A.G. Jaharah, J. Appl. Sci. Res. 8, 4865–4875 (2012)Google Scholar
  4. 4.
    D.L. Soares, A.S. Barros, M. Dias, A.L. Moreira, J.C. Filho, A.P. Silva, O.L. Rocha, Int. J. Electrochem. Sci. 12, 413–428 (2017)CrossRefGoogle Scholar
  5. 5.
    W.R. Osório, C.A. Siqueira, C.A. Santos, A. Garcia, Int. J. Electrochem. Sci. 6, 6275–6289 (2011)Google Scholar
  6. 6.
    W.R. Osório, D.J. Moutinho, L.C. Peixoto, I.L. Ferreira, A. Garcia, Electrochim. Acta 56, 8412–8421 (2011)CrossRefGoogle Scholar
  7. 7.
    E.C. Araújo, A.S. Barros, R.H. Kikuchi, A.P. Silva, F.A. Gonçalves, A.L. Moreira, O.L. Rocha, Metall. Mater. Trans. A 48, 1163–1175 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Sjölander, S. Seifeddine, J. Mater. Process. Technol. 210, 1249–1259 (2010)CrossRefGoogle Scholar
  9. 9.
    E.H. Samuel, A.M. Samuel, H.W. Doty, AFS Trans. 30, 893–901 (1996)Google Scholar
  10. 10.
    A.M. Samuel, P. Ouellet, F.H. Samuel, H.W. Doty, AFS Trans. 105, 951–962 (1997)Google Scholar
  11. 11.
    A.M. Samuel, J. Gauthier, F.H. Samuel, Metall. Mater. Trans. A 27, 1785–1798 (1996)CrossRefGoogle Scholar
  12. 12.
    Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, J. Mater. Sci. 38, 1203–1218 (2003)CrossRefGoogle Scholar
  13. 13.
    Y.M. Han, A.M. Samuel, F.H. Samuel, S. Valtierra, H.W. Doty, AFS Trans. 116, 79–90 (2008)Google Scholar
  14. 14.
    M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M.A. Al-Ahmari, F.H. Samuel, Mater. Des. 32, 2130–2142 (2011)CrossRefGoogle Scholar
  15. 15.
    O.L. Rocha, C.A. Siqueira, A. Garcia, Metall. Mater. Trans. A 34, 995–1006 (2003)CrossRefGoogle Scholar
  16. 16.
    D. Bouchard, J.S. Kirkaldy, Metall. Mater. Trans. B 28, 651–663 (1997)CrossRefGoogle Scholar
  17. 17.
    J.D. Hunt, S.Z. Lu, Mater. Sci. Eng., A 173, 79–83 (1993)CrossRefGoogle Scholar
  18. 18.
    H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, Mater. Des. 34, 707–712 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Trivedi, Y.X. Shen, S. Liu, Metall. Mater. Trans. A 34, 395–401 (2003)CrossRefGoogle Scholar
  20. 20.
    E. Çadırlı, U. Böyük, S. Engin, H. Kaya, J. Alloys Compd. 694, 471–479 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Gündüz, E. Çadırlı, Mater. Sci. Eng., A 327, 167–185 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Kaya, E. Çadırlı, U. Böyük, N. Maraşlı, Appl. Surf. Sci. 255, 3071–3078 (2008)CrossRefGoogle Scholar
  23. 23.
    A.S. Barros, I.A. Magno, F.A. Souza, C.A. Mota, A.L. Moreira, M.S. Silva, O.L. Rocha, Metals Mater. Int. 21, 429–439 (2015)CrossRefGoogle Scholar
  24. 24.
    D.B. Carvalho, E.C. Guimarães, A.L. Moreira, D.J. Moutinho, J.M. Dias Filho, O.L. Rocha, Mater. Res. 16, 874–883 (2013)CrossRefGoogle Scholar
  25. 25.
    M.D. Peres, C.A. Siqueira, A. Garcia, J. Alloys Compd. 381, 168–181 (2004)CrossRefGoogle Scholar
  26. 26.
    O.L. Rocha, C.A. Siqueira, A. Garcia, Mater. Sci. Eng., A 361, 111–118 (2003)CrossRefGoogle Scholar
  27. 27.
    F. Sá, O.L. Rocha, C.A. Siqueira, A. Garcia, Mater. Sci. Eng., A 373, 131–138 (2004)CrossRefGoogle Scholar
  28. 28.
    C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, A. Garcia, Metall. Mater. Trans. A 46, 3342–3355 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu, B. Liu, Mater. Sci. Eng., A 685, 391–402 (2017)CrossRefGoogle Scholar
  30. 30.
    T.A. Costa, M. Dias, L.G. Gomes, O.L. Rocha, A. Garcia, J. Alloys Compd. 683, 485–494 (2016)CrossRefGoogle Scholar
  31. 31.
    A.J. Vasconcelos, R.H. Kikuchi, A.S. Barros, T.A. Costa, M. Dias, A.L. Moreira, A.P. Silva, O.L. Rocha, An. Acad. Bras. Ciênc. 88, 1099–1111 (2016)CrossRefGoogle Scholar
  32. 32.
    T.A. Costa, A.L. Moreira, D.J. Moutinho, M. Dias, I.L. Ferreira, J.E. Spinelli, O.L. Rocha, A. Garcia, Mater. Sci. Technol. 31, 1103–1112 (2015)CrossRefGoogle Scholar
  33. 33.
    D.J. Moutinho, L.G. Gomes, O.L. Rocha, I.L. Ferreira, A. Garcia, Mater. Sci. Forum 730–732, 883–888 (2013)Google Scholar
  34. 34.
    M. Rappaz, W.J. Boettinger, Acta Mater. 47, 3205–3219 (1999)CrossRefGoogle Scholar
  35. 35.
    A. Sharma, Y.S. Shin, J. Jung, J. Weld. Join. 33, 1–8 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Chen, Y. Shi, Q. Xu, B. Liu, Trans. Nonferrous Metals Soc. China 24, 1645–1652 (2014)CrossRefGoogle Scholar
  37. 37.
    T. Okamoto, K. Kishitake, J. Cryst. Growth 129, 137–146 (1975)CrossRefGoogle Scholar
  38. 38.
    W. Kalifa, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Int. J. Cast Metal Res. 19, 156–166 (2006)CrossRefGoogle Scholar
  39. 39.
    J.A. Taylor, Proc. Mater. Sci. 1, 19–33 (2012)CrossRefGoogle Scholar
  40. 40.
    L. Liu, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Metall. Mater. Trans. A 40, 2457–2469 (2009)CrossRefGoogle Scholar
  41. 41.
    M.A. Moustafa, J. Mater. Process. Technol. 209, 605–610 (2009)CrossRefGoogle Scholar
  42. 42.
    C.M. Dinnis, J.A. Taylor, A.K. Dahle, Metall. Mater. Trans. A 37, 3283–3291 (2006)CrossRefGoogle Scholar
  43. 43.
    C.M. Dinnis, J.A. Taylor, A.K. Dahle, Mater. Sci. Eng., A 425, 286–296 (2006)CrossRefGoogle Scholar
  44. 44.
    Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Mater. Sci. Eng., A 490, 36–51 (2008)CrossRefGoogle Scholar
  45. 45.
    N. Roy, A.M. Samuel, F.H. Samuel, Metall. Mater. Trans. A 27, 415–429 (1996)CrossRefGoogle Scholar
  46. 46.
    C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phillion, Acta Mater. 68, 42–51 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Warmuzek, in Aluminum–Silicon Casting Alloys: An Atlas of Microfractographs (ASM International, Materials Park, 2004)Google Scholar
  48. 48.
    ASM International, ASM Handbook: Volume 12: Fractography, 9th edn. (ASM International, Metals Park, 1987)Google Scholar
  49. 49.
    K. Liu, X. Cao, X.-G. Chen, Metall. Mater. Trans. B 43, 1231–1240 (2012)CrossRefGoogle Scholar
  50. 50.
    A.M. Samuel, F.H. Samuel, J. Mater. Sci. 30, 4823–4833 (1995)CrossRefGoogle Scholar
  51. 51.
    A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Int. J. Metalcasting 11–3, 552–567 (2017)CrossRefGoogle Scholar
  52. 52.
    Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Mater. Sci. Eng., A 367, 96–110 (2004)CrossRefGoogle Scholar
  53. 53.
    P.R. Goulart, J.E. Spinelli, W.R. Osório, A. Garcia, Mater. Sci. A 421, 245–253 (2006)CrossRefGoogle Scholar
  54. 54.
    R.V. Reyes, T.S. Bello, R. Kakitani, T.A. Costab, A. Garcia, N. Cheung, J.E. Spinelli, Mater. Sci. Eng., A 685, 235–243 (2017)CrossRefGoogle Scholar
  55. 55.
    E. Çadırlı, Metals Mater. Int. 19, 411–422 (2013)CrossRefGoogle Scholar
  56. 56.
    A.T.R. Franco, C. Frajuca, F.Y. Nakamoto, G.A. dos Santos, A.A. Couto, Mater. Res. 21, 1–8 (2018)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Fabricio A. Souza
    • 2
  • Igor A. Magno
    • 2
  • Marlo O. Costa
    • 2
  • André S. Barros
    • 2
  • Jacson M. Nascimento
    • 2
  • Diego B. Carvalho
    • 1
  • Otávio L. Rocha
    • 1
    • 2
    Email author
  1. 1.Federal Institute of Education, Science and Technology of Pará - IFPABelémBrazil
  2. 2.Faculty of Mechanical EngineeringFederal University of Pará - UFPABelémBrazil

Personalised recommendations