Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 127–134 | Cite as

Microstructure and Nanosize Precipitate of Nitrided 316L Stainless Steel

  • Sul Gi Kim
  • Jae Nam Kim
  • Jei Pil Wang
  • Chang Yong KangEmail author
Article
  • 67 Downloads

Abstract

The microstructure and nanosize precipitates of nitrided 316L stainless steel were investigated mainly by transmission electron microscopy (TEM) and X-ray diffraction analysis. Nitriding treatment performed in a molten salt bath followed by cooling down to ambient temperature and further diffusion treated. Produced layer consist of surface layer at the top, compound layer in the middle and final diffusion layer. Supersaturated phase is γ′N not γ-Fe4N. The lattice parameter of γ′N is expanded about 16% by nitrogen supersaturation. Precipitates size of few nm were observed in the compound layers. These nanosize precipitates were coarsening up to ~ 40 nm by further heat treatment at 450 °C for 1 h. It was identified as Si3N4 by energy dispersive X-ray spectrometer, selected area electron diffraction patterns at two different zone axes [110], [114] and high resolution TEM analysis.

Keywords

Nanosize precipitates Si3N4 Compound layer Nitride 316L stainless steel TEM 

Notes

Acknowledgements

This work was supported by a Research Grant of Pukyong National University (2017 year). The authors would like to thank Giovanni Cossu, Laboratory for Surface Science and Technology, ETH, Zurich, Switzerland for many helpful and thoughtful discussions.

References

  1. 1.
    T. Corts, W. Bolse, T. Osipowics, K.P. Lieb, Appl. Phys. A 51(6), 537–545 (1990)CrossRefGoogle Scholar
  2. 2.
    Y. Kayali, A. Büyüksa, Y. Yalçin, Met. Mater. Int. 19(5), 1053–1061 (2013)CrossRefGoogle Scholar
  3. 3.
    A.S. Hamdy, B. Marx, D. Butt, Mater. Chem. Phys. 126, 507–514 (2011)CrossRefGoogle Scholar
  4. 4.
    D.N. Wasnik, G.K. Dey, V. Kain, I. Samajdar, Scr. Mater. 49, 135–141 (2003)CrossRefGoogle Scholar
  5. 5.
    P. Schaaf, Prog. Mater. Sci. 47, 1–161 (2002)CrossRefGoogle Scholar
  6. 6.
    D.G. Nam, N.H. Kang, Y.S. Kim, H.C. Lee, Met. Mater. Int. 15(2), 273–278 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Subbiah, S. Satheesh, S.C. Sunny, G. Kishor, K. Fahad, R. Rajavel, IJITEE 3(9), 69–71 (2014)Google Scholar
  8. 8.
    L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcantara, P. Nascente et al., Mater. Sci. Eng. A 431, 315–321 (2006)CrossRefGoogle Scholar
  9. 9.
    Z.L. Zhang, T. Bell, Surf. Eng. 1(2), 131–136 (1985)CrossRefGoogle Scholar
  10. 10.
    O. Ozturk, D.L. Williamson, J. Appl. Phys. 77(8), 3839–3850 (1995)CrossRefGoogle Scholar
  11. 11.
    P. Schaaf, Progress Mater. Sci. 47(1), 1–161 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Webber, L. Wit, F.W. Saris, A. Koniger, B. Rauschenbach, G.K. Wolf, S. Krauss, Mater. Sci. Eng. A 199(2), 205–210 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone, Y. Hirose, Surf. Coat. Technol. 193, 309–313 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Li, L. Wang, D. Zhang, L. Shen, Appl. Surf. Sci. 256(13), 4149–4152 (2010)CrossRefGoogle Scholar
  15. 15.
    O. Ozturk, D.L. Williamson, J. Appl. Phys. 77, 3839–3850 (1995)CrossRefGoogle Scholar
  16. 16.
    X. Xu, L. Wang, Z. Yu, Z. Qiang, Z. Hei, Metall. Mater. Trans. A 31A(4), 1193–1199 (2000)CrossRefGoogle Scholar
  17. 17.
    D.B. Williams, C.B. Carter, Diffraction, Transmission Electron Microscopy, pp. 273 (1996)Google Scholar
  18. 18.
    D.H. Jack, K.H. Jack, Mater. Sci. Eng. 11, 1–27 (1973)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Sul Gi Kim
    • 1
  • Jae Nam Kim
    • 2
  • Jei Pil Wang
    • 1
  • Chang Yong Kang
    • 1
    Email author
  1. 1.Department of Metallurgical EngineeringPukyong National UniversityBusanRepublic of Korea
  2. 2.Graduate Institute of Ferrous TechnologyPOSTECHPohangRepublic of Korea

Personalised recommendations