Metals and Materials International

, Volume 25, Issue 1, pp 94–104 | Cite as

Effect of Ni Interlayer on the Interface Toughening and Thermal Stability of Cu/Al/Cu Clad Composites

  • Hyung Jin Kim
  • Sun Ig HongEmail author


The effect of Ni interlayer on the interface toughening and stability of Cu/Al/Cu clad composite was studied. The peel strength of Cu/Al/Cu composite with Ni interlayer increased with increase of Ni thickness and reached 10.9 N/mm for the composite with 25 μm thick interlayer. The presence of periodic Ni interlayer between Cu and Al hinders the steady crack growth along Cu/Al interface and toughen the interface by inducing the crack deflection away from Cu/Al interface. The peel stress-displacement curves of as-roll-bonded clad exhibited the stress undulation and its amplitude increased with increase of nickel interlayer thickness. The degree of crack deflection was observed to increase with increasing nickel interlayer thickness. The peel strength of Cu/Al/Cu with 25 μm thick Ni interlayer increased up to 14.5 N/mm after annealing at 200 °C, greater than those observed in Cu/Al/Cu with no interlayers. The enhanced Cu/Al bonding and softening of Al matrix by annealing at 200 °C further increased the peel strength because the crack propagated continuously through the ductile Al plate. The formation of pronounced intermetallic compounds at Cu/Al and Ni/Al interfaces after annealing above 400 °C induced the crack growth along the layers of brittle intermetallics and reduced the beneficial effects of Ni interlayer.


Crack deflection Ni interlayer Cu/Al/Cu Interface Composite Peel strength 



This work was supported by the 3rd phase of the Fundamental R&D Programs for Core Technology of Materials funded by Ministry of Trade, Industry and Energy (Grant No. G011005095104).


  1. 1.
    M. Kent, Electr. Veh. Mag. 27, 29 (2016)Google Scholar
  2. 2.
    K. Oba, Fujikura Tech. Rev. 42, 77 (2013)Google Scholar
  3. 3.
    A. Uhlemann, A. Herbrandt, PCIM Europe 2012, 680 (2012)Google Scholar
  4. 4.
    S. Park, S. Nagao, T. Sugahara, K. Suganuma, J. Mater. Sci. 26, 7277 (2015)Google Scholar
  5. 5.
    I.K. Kim, S.I. Hong, Mater. Des. 47, 590 (2013)CrossRefGoogle Scholar
  6. 6.
    I.K. Kim, S.I. Hong, Mater. Des. 57, 625 (2014)CrossRefGoogle Scholar
  7. 7.
    C.Y. Chen, H.L. Chen, W.S. Hwang, Mater. Trans. 47, 1232 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Abbasi, A.K. Taheri, M.T. Salehi, J. Alloys Compd. 319, 233 (2001)CrossRefGoogle Scholar
  9. 9.
    I.K. Kim, J.S. Ha, S.I. Hong, Korean J. Met. Mater. 50, 939 (2012)Google Scholar
  10. 10.
    J.-S. Kim, J. Park, K.S. Lee, S. Lee, Y.W. Chang, Met. Mater. Int. 22, 771 (2016)CrossRefGoogle Scholar
  11. 11.
    J.G. Kim, S.M. Baek, W.T. Cho, T.J. Song, K.G. Chin, S.H. Lee, H.S. Kim, Met. Mater. Int. 23, 459 (2017)CrossRefGoogle Scholar
  12. 12.
    Y.B. Zhang, Y. Fu, J.C. Jie, L. Wu, K. S, Q.T. Guo, T.J. Li, T.M. Wang, Met. Mater. Int. 23, 1197 (2017)CrossRefGoogle Scholar
  13. 13.
    M.M. Hoseini-Athar, B. Tolaminejad, Met. Mater. Int. 22, 670 (2016)CrossRefGoogle Scholar
  14. 14.
    D.H. Lee, J.S. Kim, H.J. Song, S.H. Lee, Met. Mater. Int. 23, 805 (2017)CrossRefGoogle Scholar
  15. 15.
    J.H. Cha, S.H. Kim, Y.S. Lee, H.W. Kim, Y.S. Choi, Met. Mater. Int. 22, 880 (2016)CrossRefGoogle Scholar
  16. 16.
    H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A.R. Godbole, C. Kong, Philos. Mag. 98, 1537 (2018)CrossRefGoogle Scholar
  17. 17.
    H.T. Gao, X.H. Liu, J.L. Qi, Z.R. Ai, L.Z. Liu, J. Mater. Process. Technol. 251, 1 (2018)CrossRefGoogle Scholar
  18. 18.
    B. Guan, B.Y. Chen, Y. Zang, Q. Qin, Strength Mater. 50, 79 (2018)CrossRefGoogle Scholar
  19. 19.
    F. Moisy, A. Gueydan, X. Sauvage, A. Guillet, C. Keller, E. Guilmeau, E. Hug, Mater Des. 155, 366 (2018)CrossRefGoogle Scholar
  20. 20.
    Q. Zhang, S. Li, J. Liu, Y. Wang, B. Zhang, L.Y. Zhang, Metals 8, 329 (2018)CrossRefGoogle Scholar
  21. 21.
    C. Yu, Z.C. Qi, H. Yu, C. Xu, H. Xiao, J. Mater. Eng. Perform. 27, 1664 (2018)CrossRefGoogle Scholar
  22. 22.
    K.S. Lee, S.M. Lee, J.S. Lee, Y.B. Kim, G.A. Lee, S.P. Lee, D.S. Bae, Met. Mater. Int. 22, 880 (2016)CrossRefGoogle Scholar
  23. 23.
    E. Hug, N. Bellido, Mater. Sci. Eng. A 528, 7103 (2011)CrossRefGoogle Scholar
  24. 24.
    I.K. Kim, S.I. Hong, Metall. Mater. Trans. A 44, 3890 (2014)CrossRefGoogle Scholar
  25. 25.
    J.G. Kim, J.H. Ju, D.Y. Kim, S.H. Park, Y.R. Cho, Korean J Met. Mater. 55, 523 (2017)CrossRefGoogle Scholar
  26. 26.
    J.Y. Jin, S.I. Hong, Mater. Sci. Eng. A 596, 1 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Paul, L.L. Dobrzyńska, Metall. Mater. Trans. A 44, 3836 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Shabani, M.R. Toroghinejad, A. Shafyei, Mater. Des. 40, 212 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Zhang, G. Luo, Y. Wang, Q. Shen, L. Zhang, Mater. Lett. 83, 189 (2012)CrossRefGoogle Scholar
  30. 30.
    X.K. Peng, R. Wuhrer, G. Heness, W.Y. Yeung, J. Mater. Sci. 35, 4357 (2000)CrossRefGoogle Scholar
  31. 31.
    J.R. Tuck, A.M. Korsunsky, R.I. Davidson, S.J. Bull, D.M. Elliott, Surf. Coat. Technol. 127, 1 (2000)CrossRefGoogle Scholar
  32. 32.
    C. Barret, T.B. Massalski, Structure of Metals, third ed., revised edn. (Pergamon Press, Oxford, 1980), p. 545Google Scholar
  33. 33.
    S.I. Hong, M.A. Hill, Acta Mater. 46, 4111 (1998)CrossRefGoogle Scholar
  34. 34.
    S.I. Hong, M.A. Hill, Mater. Sci. Eng. A 281, 189 (2000)CrossRefGoogle Scholar
  35. 35.
    K.H. Lee, S.I. Hong, J. Mater. Res. 18, 2194 (2003)CrossRefGoogle Scholar
  36. 36.
    S.I. Hong, Mater. Sci. Eng. A 711, 492 (2018)CrossRefGoogle Scholar
  37. 37.
    W.N. Kim, S.I. Hong, Mater. Sci. Eng. A 651, 976 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Nanomaterials EngineeringChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations