Metals and Materials International

, Volume 25, Issue 1, pp 193–206 | Cite as

Variation of Mechanical Properties and Corrosion Properties with Mo Contents of Hyper Duplex Stainless-Steel Welds

  • No-hoon Kim
  • Woong Gil
  • Heui-dae Lim
  • Chang-hyeon Choi
  • Hae-woo LeeEmail author


This study investigates the effect of the Mo content on the mechanical and corrosion properties of hyper duplex stainless-steel welds that are subjected to flux cored arc welding (FCAW). Conventional hyper duplex stainless steel has limited productivity owing to the welding position and welding equipment of gas tungsten arc welding (GTAW) and submerged arc welding (SAW). As such, the purpose of this study is to develop a weld material for FCAW, which is not subject to the limitations of GTAW and SAW, as well as to improve productivity and quality. FCAW was performed under the same conditions, except for the Mo content, which were varied to 3, 4.5, and 6 wt%. Tensile and impact tests were carried out to investigate the variation of the mechanical properties according to the Mo content. As the Mo content increased, the elongation decreased and the strength increased. It was confirmed that the δ-ferrite phase increased and the γ-austenite phase decreased as the Mo content increased. Secondary phase such as σ phase, χ phase were mainly distributed in ferrite grains or austenite–ferrite grain boundaries using EBSD. It was also increased as the Mo content increased. To evaluate the corrosion resistance, Potentiodynamic Polarization Tests and DL-EPR tests were conducted. As a result, all of specimens showed similar corrosion resistance.


Hyper duplex stainless steel DL-EPR test Potentiodynamic polarization tests Flux cored arc welding (FCAW) Mo content 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education (No. NRF-2018R1D1A1B07050502).


  1. 1.
    S.-K. Ahn, J.-S. Kim, K.-T. Kim, J. KWS 22, 22–33 (2010)Google Scholar
  2. 2.
    S.-K. Nam, S.-J. Park, H.-S. Na, C.-Y. Kang, J. KWJS 28, 18–25 (2010)Google Scholar
  3. 3.
    M. Barry, V. Oprea, A. Wright, Stainl. Steel World 53, 15 (2007)Google Scholar
  4. 4.
    B.S. Han, H.W. Lee, Met. Mater. Int. 19(3), 563–569 (2013)CrossRefGoogle Scholar
  5. 5.
    H.-J. Kim, S.-H. Jeon, S.-T. Kim, I.-S. Lee, Y.-S. Park, Corros. Sci. Technol. 13, 70–80 (2014)CrossRefGoogle Scholar
  6. 6.
    S.M. Kim, Korean Soc. Technol. Plast. 54, 209–212 (2010)Google Scholar
  7. 7.
    J.D. Redmond, Chem. Eng. 57, 153 (1986)Google Scholar
  8. 8.
    G. Chai, U. Kivisakk, J. Tokaruk, J. Eidhagen, Stainless Steel World 27–33, (2009)Google Scholar
  9. 9.
    S.-H. Jang, S.-T. Kim, I. Lee, Y.-S. Park, Mater. Trans. 52, 1228–1236 (2011)CrossRefGoogle Scholar
  10. 10.
    B.-H. Lee, H.-W. Lee, Y.-T. Shin, Int. J. Electrochem. Sci. 10, 7535–7547 (2015)Google Scholar
  11. 11.
    J.P.G. Farr, Polyhedron 5, 551–559 (1986)CrossRefGoogle Scholar
  12. 12.
    E.S. Jang, K.Y. Kim, S.J. Kim, J. Korea Foundry Soc. 35, 23–28 (2015)CrossRefGoogle Scholar
  13. 13.
    T.H. Chen, K.L. Weng, J.R. Yang, Mater. Sci. Eng. A 338, 259–270 (2002)CrossRefGoogle Scholar
  14. 14.
    H.M. Ezubera, A. El-Houdb, F. El-Shaweshb, Desalination 207, 268–275 (2007)CrossRefGoogle Scholar
  15. 15.
    V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, S.S.M. Tavares, Mater. Charact. 59, 1127–1132 (2008)CrossRefGoogle Scholar
  16. 16.
    M.H. Moayed, R.C. Newman, Corros. Sci. 48, 1004–1018 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Kou, Welding Metallurgy (New Jersey, USA, 2003), pp. 431–446Google Scholar
  18. 18.
    K.-M. Moon, Y.-H. Kim, S.-Y. Lee, J.-D. Kim, M.-H. Lee, J.-G. Kim, J. Korean Soc. Mar. Eng 33, 1162–1169 (2009)CrossRefGoogle Scholar
  19. 19.
    Y.-T. Shin, S.-W. Kang, M.-H. Kim, J. Weld. Join. 26, 51–60 (2008)CrossRefGoogle Scholar
  20. 20.
    J.L. Garin, R.L. Mannheim, Powder Diffr. 27(2), 131–135 (2012)CrossRefGoogle Scholar
  21. 21.
    N. Lopez, M. Cid, M. Puiggali, Corros. Sci. 41, 1615–1631 (1999)CrossRefGoogle Scholar
  22. 22.
    A.J. Ramirez, J.C. Lippold, S.D. Brandi, Metall. Mater. Trans. A 34(8), 1575–1597 (2003)CrossRefGoogle Scholar
  23. 23.
    A.J. Ramirez, S.D. Brandi, J.C. Lippold, Sci. Technol. Weld. Join. 9(4), 301–313 (2004)CrossRefGoogle Scholar
  24. 24.
    B.-S. Jang, I.-J. Moon, S.-C. Kim, J.-H. Koh, J. Weld. Join. 31(5), 20–25 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Kim, S.-H. Jeon, S.-T. Kim, Y.-S. Park, Corros. Sci. 91, 140–150 (2015)CrossRefGoogle Scholar
  26. 26.
    D.H. Kang, H.W. Lee, Corros. Sci. 74, 396–407 (2013)CrossRefGoogle Scholar
  27. 27.
    J.O. Nilsson, L. Karlsson, J.O. Andersson, Mater. Sci. Technol. 11(3), 276–283 (1995)CrossRefGoogle Scholar
  28. 28.
    R.N. Gunn (ed.) (Woodhead Publishing, Cambridge, 1997)Google Scholar
  29. 29.
    H. Sieurin, R. Sandström, Eng. Fract. Mech. 73(4), 377–390 (2006)CrossRefGoogle Scholar
  30. 30.
    F. Eghbali et al., Corros. Sci. 53(1), 513–522 (2011)CrossRefGoogle Scholar
  31. 31.
    T. Mesquita et al., Int. J. Metall. 108(4), 203–211 (2011)Google Scholar
  32. 32.
    Y.S. Kim, J. Kim, Corros. Sci. Soc. Korea 26, 435–445 (1997)Google Scholar
  33. 33.
    W. Tian, N. Du, S. Li, S. Chen, W. Qunying, Corros. Sci. 85, 372–379 (2014)CrossRefGoogle Scholar
  34. 34.
    S.-K. Nam, S.-J. Park, H.-S. Na, C.-Y. Kang, J. Weld. Join. 28(4), 18–25 (2010)CrossRefGoogle Scholar
  35. 35.
    I. Moreno, J.F. Almagro, X. Llovet, Microchim. Acta 139(1), 105–110 (2002)CrossRefGoogle Scholar
  36. 36.
    F. Wong, R. Buchheit, ECS Trans. 16(52), 91–100 (2009)CrossRefGoogle Scholar
  37. 37.
    Y.S. Ahn, J.P. Kang, Mater. Sci. Technol. 16(4), 382–388 (2000)CrossRefGoogle Scholar
  38. 38.
    R.A. Perren et al., Corros. Sci. 43(4), 707–726 (2001)CrossRefGoogle Scholar
  39. 39.
    H.-Y. Liou, R.-I. Hsieh, W.-T. Tsai, Mater. Chem. Phys. 74(1), 33–42 (2002)CrossRefGoogle Scholar
  40. 40.
    D.A. Jones, Principles and Prevention of Corrosion (Macmillan, Basingstoke, 1992), p. 568Google Scholar
  41. 41.
    International Standard, ISO 12732, Corrosion of Metals and Alloys—Electrochemical Potentiokinetic Reactivation Measurement Using the Double Loop Method (Based on Cihal’s Method), 2008Google Scholar
  42. 42.
    H. Tan, Y. Jiang, B. Deng, T. Sun, X. Juliang, J. Li, Mater. Charact. 60, 1049–1054 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Knyazeva, M. Pohl, Metallogr. Microstruct. Anal. 2(5), 343–351 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • No-hoon Kim
    • 1
  • Woong Gil
    • 2
  • Heui-dae Lim
    • 2
  • Chang-hyeon Choi
    • 2
  • Hae-woo Lee
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringDong-A UniversityBusanRepublic of Korea
  2. 2.Department of ProductionSEAH ESABChangwonRepublic of Korea

Personalised recommendations