Metals and Materials International

, Volume 25, Issue 1, pp 268–276 | Cite as

Characterization and Property Evaluation of Ti-Based Target Materials and Their Nitride Nano-composites Coating Layers

  • Jeong-Han Lee
  • Hyun-Kuk Park
  • Jun-Ho Jang
  • Ik-Hyun OhEmail author


This study formed a hard TiAlSiWN coating layer using Ti, Al, Si and W raw powders that were mechanically alloyed and refined. The TiAlSi and TiAlSiW coating targets were fabricated using a pulse current activated sintering process in a short time with the optimal sintering conditions. The optimized sintering condition was obtained by controlling process parameters such as temperature, pressure, heating rate and pulse ratio (on/off). The coating targets were successfully deposited on the WC substrate to form the TiAlSiN and TiAlSiWN nitride nano-composite structures by an arc ion plating process and also, their coating layers were compared according to the addition of W element. The microstructures of the nitride nano-composite coating layer were analyzed, focusing on the distribution of the crystalline phases, amorphous phases (Si3N4), and growth orientation of the columnar crystal depending on the addition of W element. The mechanical properties of the coating layers were exhibited a hardness of approximately 3000 kg/mm2 and adhesion of about 117.77 N in the TiAlSiN. In particular, the TiAlSiWN showed excellent properties with a hardness of more than 4300 kg/mm2 and an adhesion of about 181.47 N, respectively.


TiAlSiW Mechanical alloying Pulsed current activated sintering process Arc ion plated thin film Nitride nano-composites Hard coating 



This study has been conducted with the support of the Korea Institute of Industrial Technology(KITECH) as “Source technology development project (KITECH EO-18-0002)”.


  1. 1.
    W. Ji, B. Zou, S. Zhang, H. Xing, H. Yun, Y. Wang, J. Alloys Comp. 732, 25–31 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Stuber, H. Holleck, H. Leiste, K. Seemann, J. Alloys Comp. 483, 321–333 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Yang, Q. Wei, Y. Qi, Y. Wang, Y. Xie, J. Luo, Z. Yu, J. Alloys Comp. 639, 659–668 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Yu, C. Wang, X. Cheng, F. Zhang, Appl. Surf. Sci. 255, 1865–1869 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Rahman, Z. Jiang, Z. Zhou, Z. Xie, C. Yin, H. Kabir, Md Haque, A. Amri, N. Mondinos, M. Altarawneh, J. Alloys Comp. 671, 254–266 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Lei, P. Liu, S. Zhao, K. Zhang, F. Ma, X. Liu, X. Chen, D. He, J. Alloys Comp. 691, 159–164 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Elmkhah, T. Zhang, A. Abdollar-zadeh, K.H. Kim, F. Mahboubi, J. Alloys Comp. 688, 820–827 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Yasuoka, P. Wang, R. Murakami, Surf. Coat. Technol. 206, 2168–2172 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Ji, B. Zou, S. Zhang, H. Xing, H. Yun, Y. Wang, J. Alloys Comp. 73, 225–231 (2017)Google Scholar
  10. 10.
    X. Zha, F. Jiang, X. Xu, Int. J. Mech. Sci. 134, 1–14 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E. Alves, Thin Solid Films 398, 391–396 (2001)CrossRefGoogle Scholar
  12. 12.
    J.B. Zhou, K.P. Rao, C.Y. Chung, J. Mater. Proc. Technol. 139, 434–439 (2003)CrossRefGoogle Scholar
  13. 13.
    L. Xue-wen, S. Hong-fei, F. Wen-bin, D. Yong-feng, Trans. Nonferrous Met. Soc. China 21, 338–341 (2011)CrossRefGoogle Scholar
  14. 14.
    H.C. Barshilia, M. Ghosh, R.Ramakrishna Shashidhara, K.S. Rajam, Appl. Surf. Sci. 256, 6420–6426 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Philippon, V. Godinho, P.M. Nagy, M.P. Delplancke-Ogletree, A. Fernandez, Wear 270, 541–549 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Messier, J. Vac. Sci. Technol. 4, 490 (1986)CrossRefGoogle Scholar
  17. 17.
    J.E. Greene, S.A. Barnett, J.E. Sundgren, A. Rockett, T. Itoh (eds.), J. ITOH, Elsevoier, Amstardam (1989)Google Scholar
  18. 18.
    D.V. Shtansky, A.N. Sheveiko, M.I. Petrzhik, F.V. Kiryukhantsev-Korneev, E.A. Levashov, A. Leyland, A.L. Yerokhin, A. Matthews, Surf. Coat. Technol. 200, 208–212 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Sakamoto, M. Waki, US Patent 8586214 (2013)Google Scholar
  20. 20.
    M. Waki, M. Hasegawa, US Patent 8945251 (2015)Google Scholar
  21. 21.
    A.W. Searcy, J. Am. Ceram. Soc. 68, 267–268 (1985)CrossRefGoogle Scholar
  22. 22.
    M. Rahimian, N. Ehsani, N. Parvin, H. Reza Baharvandi, J. Mater. Proc. Technol. 209, 5387–5393 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Li, Q.F. Gu, Q. Luo, Y. Pang, S.L. Chen, K.C. Chou, X.L. Wang, Q. Li, Mater. Des. 102, 78–90 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Jung, S. Kang, Scr. Mater. 56, 561–564 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Gharbi, P. Peyre, C. Gornt, M. Carin, S. Morvile, P.L. Masson, D. Carron, R. Fabbro, J. Mater. Proc. Technol. 213, 791–800 (2013)CrossRefGoogle Scholar
  26. 26.
    D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Mater. Des. 91, 80–89 (2016)CrossRefGoogle Scholar
  27. 27.
    K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Policik, R. Tessadri, C. Mitterer, Surf. Coat. Technol. 200, 2358–2365 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Zhou, Y. Makino, M. Noose, K. Nogi, Thin Solid Films 339, 203 (1999)CrossRefGoogle Scholar
  29. 29.
    J. Patscheider, MRS Bull. 28, 180 (2003)CrossRefGoogle Scholar
  30. 30.
    A. Buranawong, S. Chaiyakhun, P. Limsuwan, Adv. Mater. Res. 93, 340–343 (2010)CrossRefGoogle Scholar
  31. 31.
    S.I. Wright, M.M. Nowell, Microsc. Soc. Am. 8, 682–683 (2002)Google Scholar
  32. 32.
    A.R. Stokes, A.J.C. Wilson, Proc. Camb. Philos. Soc. 40, 197–198 (1944)CrossRefGoogle Scholar
  33. 33.
    J.A. Thronton, J. Vac. Sci. Technol. 11, 666 (1974)CrossRefGoogle Scholar
  34. 34.
    N.V. Alov, J. Anal. Chem. 60, 431–435 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Jeong-Han Lee
    • 1
    • 2
  • Hyun-Kuk Park
    • 1
  • Jun-Ho Jang
    • 1
  • Ik-Hyun Oh
    • 1
    Email author
  1. 1.EV Components Materials GroupKorea Institute of Industrial Technology (KITECH)GwangjuRepublic of Korea
  2. 2.Materials Science and EngineeringChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations