Metals and Materials International

, Volume 25, Issue 1, pp 71–82 | Cite as

Anisotropy of the Wear and Mechanical Properties of Extruded Aluminum Alloy Rods (AA2024-T4)

  • Cheon Myeong Park
  • JeKi Jung
  • Byung Chul Yu
  • Yong Ho ParkEmail author


The anisotropy of the wear and mechanical properties of extruded aluminum alloy rods (AA2024-T4) were investigated by ball-on-disk wear testing, hardness and tensile testing, optical microscopy and field-emission scanning electron microscopy, and electron backscatter diffraction. The microstructure, particularly the grain size, grain morphology, and distribution of intermetallic compounds, differed according to the extrusion direction. The results show that the extruded aluminum alloy rod exhibits anisotropic wear and mechanical properties because of this microstructural anisotropy effect. The tensile tests showed that the yield strength, ultimate tensile strength, and elongation differed according to the extrusion direction. It was confirmed that the yield strength and ultimate tensile strength were the highest in the longitudinal of the specimens. In the hardness and thermal property testing, the transverse specimens showed the highest hardness, thermal conductivity, and specific heat capacity. In wear testing, the wear rate and friction temperature in each direction under equal wear conditions differed because of the microstructural anisotropy effect. As the vertical load and linear velocity were increased in all directions, the wear behaviors of abrasion wear and small delamination, adhesion wear and delamination, galling, and seizure occurred in sequential order. However, the point at which the wear behavior changed differed for each direction. The transition of wear behavior occurred more slowly for transverse specimens than those of the other two directions (LD, 45°).


Extrusion Anisotropy AA2024-T4 Wear properties Mechanical properties 


  1. 1.
    M. Bauser, K. Siegert, Extrusion (Ohio, ASM International, 2006)Google Scholar
  2. 2.
    P.K. Saha, Aluminum extrusion technology (Ohio, Asm International, 2000)Google Scholar
  3. 3.
    T. Dursun, C. Soutis, Mater. Des. 1980–2015(56), 862–871 (2014)CrossRefGoogle Scholar
  4. 4.
    G.S. Cole, A.M. Sherman, Mater. Charact. 35, 3–9 (1995)CrossRefGoogle Scholar
  5. 5.
    B. Rebba, N. Ramanaiah, Proc. Mater. Sci. 6, 1161–1169 (2014)CrossRefGoogle Scholar
  6. 6.
    J.C. Malas, S. Venugopal, T. Seshacharyulu, Mater. Sci. Eng. A 368, 41–47 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Li, W. Xu, Z. Wang, B. Fang, R. Song, Z. Zheng, Mater. Sci. Eng. A 650, 254–263 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Fjeldly, H.J. Roven, Acta Mater. 44, 3497–3504 (1996)CrossRefGoogle Scholar
  9. 9.
    S. Li, O. Engler, P. Van Houtte, Modell. Simul. Mater. Sci. Eng. 13, 783 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Tajally, E. Emadoddin, Mater. Des. 32, 1594–1599 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Yan, H. Zhang, P. Chen, W. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 155–161 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Xin-yun, H.E. Hu, X. Ju-chen, Mater. Sci. Eng. A 515, 1–9 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Mishra, K. Kulkarni, N.P. Gurao, Mater. Des. 87, 507–519 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Ďurišin, M. Ďurišinová, K. Besterci, Kovové Materiály 45, 269–274 (2007)Google Scholar
  15. 15.
    D.R. Askeland, P. Webster, The science and engineering of materials (Springer, New York, 1996)CrossRefGoogle Scholar
  16. 16.
    S. Wang, M. Starink, Int. Mater. Rev. 50, 193–215 (2005)CrossRefGoogle Scholar
  17. 17.
    J.R. Davis, Alloying: understanding the basics (Ohio, ASM International, 2001)Google Scholar
  18. 18.
    A. Chemin, D. Marques, L. Bisanha, A.D.J. Motheo, W.W. Bose Filho, C.O.F. Ruchert, Mater. Des. 53, 118–123 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, W. Zhang, C. Yang, D. Zhang, Z. Wang, J. Mater. Res. 33, 898–911 (2018)CrossRefGoogle Scholar
  20. 20.
    A.E. Hughes, N. Birbilis, J.M. Mol, S.J. Garcia, X. Zhou, G.E. Thompson, in Recent Trends in Processing and Degradation of Aluminium Alloys, (InTech, 2011)Google Scholar
  21. 21.
    J. Jung, J.-J. Oak, Y.-H. Kim, Y.J. Cho, Y.H. Park, Met. Mater. Int. 23, 1097–1105 (2017)CrossRefGoogle Scholar
  22. 22.
    S.-H. Kim, J.U. Lee, Y.J. Kim, J.O. Choi, J.-H. Lee, S.H. Park, Korean J. Met. Mater. 56, 40–48 (2018)CrossRefGoogle Scholar
  23. 23.
    Y.O. Yoon, S.K. Kim, J. KFS. 30, 210–216 (2010)Google Scholar
  24. 24.
    A. Blake, Handbook of Mechanics, Materials, and Structures (Wiley, Hoboken, 1985)Google Scholar
  25. 25.
    M.-Z. Xing, Y.-G. Wang, Z.-X. Jiang, Def. Technol. 9, 193–200 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, J. Alloy. Compd. 608, 19–24 (2014)CrossRefGoogle Scholar
  27. 27.
    A.K. Prasada Rao, K. Das, B.S. Murty, M. Chakraborty, Wear 257, 148–153 (2004)CrossRefGoogle Scholar
  28. 28.
    E.S. Lee, J.-J. Oak, J. Bang, Y.H. Park, J. Alloy. Compd. 689, 145–152 (2016)CrossRefGoogle Scholar
  29. 29.
    J.F. Archard, Wear 2, 438–455 (1958)CrossRefGoogle Scholar
  30. 30.
    G. Sharma, P.K. Limaye, R.V. Ramanujan, M. Sundararaman, N. Prabhu, Mater. Sci. Eng. A 386, 408–414 (2004)CrossRefGoogle Scholar
  31. 31.
    Y. Ono, Progress Theoret. Phys. 46, 757–775 (1971)CrossRefGoogle Scholar
  32. 32.
    Tribology Series, (Amsterdam, Elsevier, 1987), pp. 351–495Google Scholar
  33. 33.
    B.C. Yu, K.-C. Bae, J.K. Jung, Y.-H. Kim, Y.H. Park, Met. Mater. Int. 24, 576–585 (2018)CrossRefGoogle Scholar
  34. 34.
    L. Samuels, E. Doyle, D. Turley, Fundam. Frict. Wear Mater. 1, 13–41 (1980)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Cheon Myeong Park
    • 1
  • JeKi Jung
    • 1
  • Byung Chul Yu
    • 1
  • Yong Ho Park
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringPusan National UniversityPusanRepublic of Korea

Personalised recommendations