Advertisement

Metals and Materials International

, Volume 25, Issue 1, pp 105–116 | Cite as

Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid

  • A. Madhan KumarEmail author
  • S. Fida HassanEmail author
  • Ahmad A. Sorour
  • M. Paramsothy
  • M. Gupta
Article
  • 100 Downloads

Abstract

Magnesium (Mg) based implant materials are believed to be the perfect candidates for biomedical applications due to their versatile properties. However, regulating their corrosion/degradation rate in the biological surroundings is still a noteworthy task. Suitable strategies to overcome this task is to wisely select alloy elements with improved corrosion resistance and mechanical characteristics. An attempt has been made to enhance the corrosion and biocompatibility performance of magnesium alloy AZ31 containing carbon nanotubes (CNTs) as reinforcement and evaluate its degradation and invitro mineralization performance in physiological medium. Corrosion behavior of AZ31 alloy with CNTs reinforcement was investigated using electrochemical methods, weight loss, and hydrogen evolution in SBF during short and long-term periods. The obtained results revealed that the corrosion resistance of AZ31 alloy enhanced significantly due to the incorporation of CNTs. Hydrogen evolution test and weight loss tests revealed that the presence of CNTs improves the stability of the Mg(OH)2 and efficiently regulate the degradation behavior in SBF. Surface characterization after immersion in SBF revealed the rapid formation of bone-like apatite layer on the surface, validated a good bioactivity of the AZ31 nanocomposite samples.

Keywords

AZ31 Mg CNTs nanocomposite Corrosion EIS 

Notes

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through Project No. IN151021.

References

  1. 1.
    Y. Xiang, Z. Ning, M. Hua, C. Wang, F. Cui, J. Mater. Chem. B 1, 4773 (2013)Google Scholar
  2. 2.
    L. Mao, L. Shen, J. Niu, J. Zhang, Y. Wenjiang Ding, R. Fan, G. Yuan, Nanoscale 5, 9517 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng., C 68, 948 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, P.K. Chu, Acta Biomater. 45, 2 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Ishizaki, M. Okido, Y. Masuda, N. Saito, M. Sakamoto, Langmuir 27, 6009 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Feng, X. Zhang, W. Guosong, W. Jin, Q. Hao, G. Wang, Y. Huang, P.K. Chu, RSC Adv. 6, 14756 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Madhankumar, E. Thangavel, S. Ramakrishna, I.B. Obot, H.C. Jung, K.S. Shin, Z.M. Gasem, H. Kim, D.E. Kim, RSC Adv. 4, 24272 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, J. Nanosci, Nanotechnology 10, 956 (2010)Google Scholar
  9. 9.
    Y Shimizu, In Tech, Croatia, 491 (2011)Google Scholar
  10. 10.
    G.Q. Han, J.H. Shen, X.X. Ye, B. Chen, H. Imai, K. Kondoh, W.B. Du, Mater. Lett. 181, 300 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Sabetghadam Isfahani, M. Abbasi, S.M.H. Sharifi, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Diamond Relat. Mater. 69, 160 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.H. Kim, Chem. Soc. Rev. 46, 158 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Alshehri, A.M. Ilyas, A. Hasan, A. Arnaout, F. Ahmed, A. Memi, J. Med. Chem. 59, 8149 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Byung-Dong, L. Jung-Min, P. Dong-Soo, C. Jong-Jin, R. Jungho, Y. Woon-Ha et al., Acta Biomater. 5, 3205 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Dey, K.M. Pandey, Adv. Mater. Sci. 42, 58 (2015)Google Scholar
  16. 16.
    A.Y. Adesina, Z.M. Gasem, A.M. Kumar, Metall. Mater. Trans. B 48B, 1321 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Ding, C. Wen, P. Hodgson, Y. Li, J. Mater. Chem. B 2, 1912 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 238, 156 (2017)CrossRefGoogle Scholar
  19. 19.
    N.G. Wang, R.C. Wang, C.Q. Peng, Y. Feng, J. Mater. Eng. Perform. 21, 1300 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Ascencio, M. Pekguleryuz, S. Omanovic, Corros. Sci. 87, 489 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Ghali, W. Dietzel, K.U. Kainer, J. Mater. Eng. Perform. 13, 517 (2004)CrossRefGoogle Scholar
  22. 22.
    Y. Song, D. Shan, R. Chen, E.-H. Han, Corros. Sci. 51, 1087 (2009)CrossRefGoogle Scholar
  23. 23.
    N. Pebere, C. Riera, F. Dabosi, Electrochem. Acta 35, 555 (1990)CrossRefGoogle Scholar
  24. 24.
    P.G. Pawar, R. Xing, R.C. Kambale, A.M. Kumar, S. Liu, S.S. Latthe, Prog. Org. Coat. 105, 235 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.C. Xin, J. Mater. Res. 22, 2004 (2007)CrossRefGoogle Scholar
  26. 26.
    A.M. Kumar, B. Suresh, S. Das, I.B. Obot, A.Y. Adesina, S. Ramakrishn, Carbo. Poly. 173, 121 (2017)CrossRefGoogle Scholar
  27. 27.
    G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, V. Vivier, J. Electrochem. Soc. 154, C108 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Mindivana, A. Efe, A.H. Kosatepe, E.S. Kayali, Surf. Sci. 318, 234 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Endo, T. Hayashi, I. Itoh, Y.A. Kim, D. Shimamoto, H. Muramatsu, Y. Shimizu, S. Morimoto, M. Terrones, S. Iinou, S. Koide, Appl. Phys. Lett. 92, 1 (2008)CrossRefGoogle Scholar
  30. 30.
    N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, J. Wei, Corros. Sci. 52, 1551 (2010)CrossRefGoogle Scholar
  31. 31.
    M.S.S. Saravanan, S.P.K. Babu, K. Sivaprasad, Exper. Techniq. 38, 48 (2014)CrossRefGoogle Scholar
  32. 32.
    P.S.S.R. Kumar, D.S.R. Smart, S.J. Alexis, J. Asian Ceram. 5, 71 (2017)CrossRefGoogle Scholar
  33. 33.
    M.S. Uddin, C. Hall, P. Murphy, Sci. Technol. Adv. Mater. 16, 53501 (2015)CrossRefGoogle Scholar
  34. 34.
    M.C. Turhan, Q. Li, H. Jha, R.F. Singer, S. Virtanen, Electrochim. Acta 56, 7141 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Saikrishna, G.P.K. Reddy, B. Munirathinam, R. Dumpala, M. Jagannatham, B.R. Sunil, J. Mag. Alloys 6, 1 (2011)Google Scholar
  36. 36.
    J. Zhang, X. Chi, Y. Jing, S. Lv, S. Liu, D. Fang, J.P. Zhuang, M. Zhang, R. Wu, Sci. Rep. 5, 13933 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Madhankumar, N. Rajendran, Ceram. Int. 39, 5639 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Madhankumar, N. Rajendran, Surf. Coating Technol. 213, 155 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Karthega, S. Nagarajan, N. Rajendran, Electrochemica Acta 55, 2201 (2010)CrossRefGoogle Scholar
  40. 40.
    Y. Sasikumar, N. Rajendran, Mater. Chem. Phys. 138, 114 (2013)CrossRefGoogle Scholar
  41. 41.
    P. Tian, X. Demin, X. Liu, Colloids Surf. B Bio Interfaces 141, 327 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Center of Research Excellence in Corrosion, Research InstituteKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Department of Mechanical EngineeringKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  3. 3.School of Science and TechnologySingapore University of Social Sciences (SUSS)SingaporeSingapore
  4. 4.NanoWorld Innovations (NWI)SingaporeSingapore
  5. 5.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations