Metals and Materials International

, Volume 25, Issue 1, pp 64–70 | Cite as

Fretting Fatigue Behavior of Ti–6Al–4V and Ti–10V–2Fe–3Al Alloys

  • Zhi Yan LiEmail author
  • Xiao Long Liu
  • Guo Qing Wu
  • Zheng Huang


The effect of fretting on fatigue performance of different microstructures for titanium alloy was studied using a high-frequency push–pull fatigue testing machine. Both plain and fretting fatigue curves were obtained for comparative analysis of the fretting effect on fatigue performance of the different titanium alloy. The result shows that the strength, plain fatigue of Ti6Al4V titanium is lower than those of Ti1023 titanium. But the fretting fatigue of Ti6Al4V titanium is higher under each contact stress. The fatigue source depth of Ti1023 alloy is greater than Ti6Al4V alloy. Hardening of Ti1023 alloy is more serious after fretting. The wear mechanism of two titanium alloys is different, Ti1023 titanium alloy is more sensitive to fretting wear.


Fretting fatigue Fatigue source Microhardness Fretting wear 



Author Li ZY has received research grants from Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Liu XL, Wu GQ, Huang Z are members of the project team.


This study was funded by Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C. Leyens, M. Peters (eds.), Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim, 2003)Google Scholar
  2. 2.
    G. Lutjering, J.C. Williams, Titanium, 2nd edn. (Springer, New York, 2007)Google Scholar
  3. 3.
    B. Oberwinkler, M. Riedler, W. Eichlseder, Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings. Int. J. Fatigue 32, 808–814 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Knobbe, P. Koster, H. Christ, C. Fritzen, M. Riedler, Initiation and propagation of short fatigue cracks in forged Ti–6Al–4V. Procedia Eng. 2, 931–940 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Drechsler, T. Dorr, L. Wagner, Mechanical surface treatments on Ti–10V–2Fe–3Al for improved fatigue resistance. Mater. Sci. Eng. A 243(1–2), 217–220 (1998)CrossRefGoogle Scholar
  6. 6.
    S.K. Jha, K.S. Ravichandran, High-cycle fatigue resistance in beta-titanium alloys. JOM J. Min. Met. Mater. Soc. 53(3), 30–35 (2000)CrossRefGoogle Scholar
  7. 7.
    R.A. Antoniou, T.C. Radtke, Mechanisms of fretting-fatigue of titanium alloys. Mater. Sci. Eng. A 237(2), 229–240 (1997)CrossRefGoogle Scholar
  8. 8.
    D.L. Anton, M.J. Lutian, L.H. Favrow, D. Logan, B. Annigeri, The effects of contact stress and slip distance on fretting fatigue damage in Ti–6Al–4V/17–4PH contacts, in Symposium on Fretting Fatigue: Current Technology and Practices, Salt Lake City, 1998, ASTM International, West Conshohocken, 2000, pp. 119–140Google Scholar
  9. 9.
    T. Hattori, V.T. Kien, M. Yamashita, Fretting fatigue life estimations based on fretting mechanisms. Tribol. Int. 44(11), 1389–1393 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Li, S. Wang, Z. Wang, P. Li, Q.J. Wang, Location of the first yield point and wear mechanism in torsional fretting. Tribol. Int. 66, 265–273 (2013)CrossRefGoogle Scholar
  11. 11.
    Z.Y. Li, X.L. Liu, G.Q. Wu, W. Sha, Observation of fretting fatigue cracks of Ti6Al4V titanium alloy. Mater. Sci. Eng. A 707, 51–57 (2017)CrossRefGoogle Scholar
  12. 12.
    G.Q. Wu, Z. Li, W. Sha et al., Effect of fretting on fatigue performance of Ti-1023 titanium alloy. Wear 309(1–2), 74–81 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Mall, S.A. Namjoshi, W.J. Porter, Effects of microstructure on fretting crack initiation behavior of Ti–6Al–4V. Mater. Sci. Eng A 383, 334–340 (2004)CrossRefGoogle Scholar
  14. 14.
    O. Jin, S. Mall, Effect of independent pad displacement on fretting fatigue behavior of Ti–6Al–4V. Wear 253(5–6), 585–596 (2002)CrossRefGoogle Scholar
  15. 15.
    J. Takeda, M. Niinomi, T. Akahori, Gunawarman effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy Ti–4.5Al–3V–2Mo–2Fe. Int. J. Fatigue 26(9), 1003–1015 (2004)CrossRefGoogle Scholar
  16. 16.
    G.H. Majzoobi, K. Azadikhah, J. Nemati, The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum -7075-T6. Mater. Sci. Eng. A 516(1–2), 235–247 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Lee, S. Mall, Fretting fatigue behavior of Ti–6Al–4V under seawater environment. Mater. Sci. Eng. A 403(1–2), 281–289 (2005)Google Scholar
  18. 18.
    T.E. Matikas, E.B. Shell, P.D. Nicolaou, Proc. SPIE 3585, 2–10 (1999)CrossRefGoogle Scholar
  19. 19.
    P.J. Golden, M.J. Shepard, Life prediction of fretting fatigue with advanced surface treatments. Mater. Sci. Eng. A 468–470, 15–22 (2007)CrossRefGoogle Scholar
  20. 20.
    O.J. McCarthy, J.P. McGarry, S.B. Leen, Microstructure-sensitive prediction and experimental validation of fretting fatigue. Wear 305(1–2), 100–114 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Vázquez, C. Navarro, J. Domínguez, Analysis of the effect of a textured surface on fretting fatigue. Wear 305(1–2), 23–35 (2013)CrossRefGoogle Scholar
  22. 22.
    J.J. Madge, S.B. Leen, I.R. McColl, P.H. Shipway, Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 262(9–10), 1159–1170 (2007)CrossRefGoogle Scholar
  23. 23.
    J.J. Madge, S.B. Leen, P.H. Shipway, The critical role of fretting wear in the analysis of fretting fatigue. Wear 263(1–6), 542–551 (2007)CrossRefGoogle Scholar
  24. 24.
    J.J. Madge, S.B. Leen, P.H. Shipway, A combined wear and crack nucleation –propagation methodology for fretting fatigue prediction. Int. J. Fatigue 30(9), 1509–1528 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Berthier, C. Colombie, L. Vinenet, Fretting wear and their effects on fretting fatigue. Tribology 110, 517 (1988)CrossRefGoogle Scholar
  26. 26.
    D. Ye, Mater. Chem. Phys. 93, 495–503 (2005)CrossRefGoogle Scholar
  27. 27.
    D. Ye, Z. Wang, An approach to investigate pre-nucleation fatigue damage of cyclically loaded metals using Vicker microhardness test. Int. J. Fatigue 23(1), 85–91 (2001)CrossRefGoogle Scholar
  28. 28.
    A. Hutson, H. Lee, S. Mall, Effect of dissimilar metal on fretting fatigue behavior of Ti–6Al–4V. Tribol. Int. 39(10), 1187–1196 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Bertolini, S. Bruschi, A. Bordin, Fretting corrosion behavior of additive manufactured and cryogenic-machined Ti6Al4V for biomedical applications. Adv. Eng. Mater. 19(6), 15006–15029 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Wei, M. Wang, Study on fretting fatigue behavior of TC4 titanium alloy. Rare Met. Mater. Eng. 35, 7 (2006)Google Scholar
  31. 31.
    Z. Wei, M. Wang, L. Li, Fretting fatigue damage behavior of TC4 alloy. Mater. Mech. Eng. 30, 1 (2006)Google Scholar
  32. 32.
    S. Wang, B. Ye, Fretting damage and fatigue of high strength titanium alloy. J. Beijing Univ. Aeronaut. Astronaut. No. 4 (1990)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Zhi Yan Li
    • 1
    • 2
    Email author
  • Xiao Long Liu
    • 1
  • Guo Qing Wu
    • 1
  • Zheng Huang
    • 1
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Titanium alloys labBeijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations