Advertisement

Metals and Materials International

, Volume 24, Issue 6, pp 1403–1411 | Cite as

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Eunho Choi
  • Young Jun Kwak
  • Myoung Youp SongEmail author
Article
  • 103 Downloads

Abstract

Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN = 2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN = 3 at 593 K in 12 bar H2. At CN = 1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Keywords

Hydrogen absorbing materials Mechanical milling Hydrogen Microstructure Graphene-added Mg alloy 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number NRF-2017R1D1A1B03030515).

References

  1. 1.
    A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1(8), 1533 (1989)CrossRefGoogle Scholar
  2. 2.
    A. Karty, J.G. Genossar, P.S. Rudman, J. Appl. Phys. 50(11), 7200 (1979)CrossRefGoogle Scholar
  3. 3.
    J.-L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Int. J. Hydrogen Energy 25(10), 987 (2000)CrossRefGoogle Scholar
  4. 4.
    J.J. Reilly, R.H. Wiswall, Inorg. Chem. 7(11), 2254 (1968)CrossRefGoogle Scholar
  5. 5.
    M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, L. Pasquini, Int. J. Hydrogen Energy 41(32), 14447 (2016)CrossRefGoogle Scholar
  6. 6.
    N.E. Tran, M.A. Imam, C.R. Feng, J. Alloy. Compd. 359(1–2), 225 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Huot, M.-L. Tremblay, R. Schulz, J. Alloy. Compd. 356–357, 603 (2003)CrossRefGoogle Scholar
  8. 8.
    L. Popilevsky, V.M. Skripnyuk, M. Beregovsky, M. Senzen, Y. Amouyal, E. Rabkin, Int. J. Hydrogen Energy 41(32), 14461 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Guoxian, W. Erde, F. Shoushi, J. Alloy. Compd. 223(1), 111 (1995)CrossRefGoogle Scholar
  10. 10.
    G. Lian, S. Boily, J. Huot, A. van Neste, R. Schulz, J. Alloy. Compd. 268(1–2), 302 (1998)Google Scholar
  11. 11.
    M. Khrussanova, J.-L. Bobet, M. Terzieva, B. Chevalier, D. Radev, P. Peshev, B. Darriet, J. Alloy. Compd. 307(1–2), 283 (2000)CrossRefGoogle Scholar
  12. 12.
    H. Chu, S. Qiu, L. Sun, J. Huot, Dalton Trans. 44, 16694 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Huot, N.Y. Skryabina, D. Fruchart, Metals 2, 329–343 (2012).  https://doi.org/10.3390/met2030329 CrossRefGoogle Scholar
  14. 14.
    H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, T. Fukunaga, Acta Mater. 51(20), 6407 (2003)CrossRefGoogle Scholar
  15. 15.
    M.Y. Song, S.H. Baek, J.-L. Bobet, J. Song, S.-H. Hong, Int. J. Hydrogen Energy 35(19), 10366 (2010)CrossRefGoogle Scholar
  16. 16.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Rusi, S.R. Majid, Sci. Rep. 5, 16195 (2015)CrossRefGoogle Scholar
  20. 20.
    J.F. Stampfer Jr., C.E. Holley Jr., J.F. Suttle, J. Am. Chem. Soc. 82(14), 3504 (1959)CrossRefGoogle Scholar
  21. 21.
    S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 358 (2016)CrossRefGoogle Scholar
  22. 22.
    S.-H. Hong, M.Y. Song, Met. Mater. Int. 22, 544 (2016)CrossRefGoogle Scholar
  23. 23.
    M.Y. Song, Y.J. Kwak, H.R. Park, Korean J. Met. Mater. 54, 503 (2016)CrossRefGoogle Scholar
  24. 24.
    S.N. Kwon, H.R. Park, M.Y. Song, Korean J. Met. Mater. 54, 510 (2016)CrossRefGoogle Scholar
  25. 25.
    H.R. Park, Y.J. Kwak, M.Y. Song, Korean J. Met. Mater. 55, 656 (2017)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Engineering, Graduate SchoolChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations