Metals and Materials International

, Volume 24, Issue 5, pp 1162–1171 | Cite as

Creep Properties of Squeeze-Infiltrated Carbon Nanotube and Aluminum Borate Whisker Reinforced AS52 Mg Metal Matrix Composites

  • Sang Hyun Park
  • Dae Hyun Cho
  • Kyung Mox Cho
  • Ik Min Park


The effects of carbon nanotubes (CNTs) and aluminum borate whisker (ABw) on the creep and tensile properties of an AS52 alloy matrix composites were investigated. A hybrid 5 vol% CNT + 20 vol% ABw/AS52 Mg MMC and a single 25 vol% ABw/AS52 Mg MMC were fabricated by preform fabrication and squeeze infiltration. Creep tests were carried out at temperatures of 150–250 °C under stresses of 50 and 70 MPa. The tensile property was evaluated at room temperature and 150 °C. The minimum creep rate decreased in the order AS52 > single MMC > hybrid MMC. The creep activation energy of the hybrid MMC was 182.9 kJ/mol which was 28% and 83% higher than those of the single MMC and the AS52, respectively. The room-temperature and high-temperature tensile strengths of the hybrid MMC showed the highest values. Creep properties of the hybrid MMC improved on addition of CNTs, which prevented creep void initiation and crack propagation along the ABw interface.


Composites Carbon nanotubes Aluminum borate whisker Squeeze infiltration Creep 



This research was mainly supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078874) and this study was financially supported by the (2017 Post-Doc. Development Program) of Pusan National University.


  1. 1.
    Y.X. Wang, S.K. Guan, X.Q. Zeng, W.J. Ding, Mater. Sci. Eng. A 416, 109 (2006)CrossRefGoogle Scholar
  2. 2.
    I.P. Moreno, Scr. Mater. 48, 1029 (2003)CrossRefGoogle Scholar
  3. 3.
    S. García-Rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, J. Rams, Wear 390–391, 1 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Jin-ling, L. Yang-li, Z. Jing, F. Zhi-yong, W. She-bin, J. Alloys Compd. 629, 290 (2015)CrossRefGoogle Scholar
  5. 5.
    D. Zhang, F. Bu, X. Li, K. Guan, Q. Yang, S. Liu, X. Liu, J. Meng, Mater. Sci. Eng. A 693, 195 (2001)CrossRefGoogle Scholar
  6. 6.
    B.H. Kim, S.W. Lee, Y.H. Park, I.M. Park, J. Alloys Compd. 493, 502 (2010)CrossRefGoogle Scholar
  7. 7.
    G. L’Esperance, P. Plamondon, M. Kunst, A. Fischerworring-Bunk, Intermetallics 18, 1 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, S.C. Tung, Wear 1100, 225 (1999)Google Scholar
  9. 9.
    A. Banerji, H. Hu, A.T. Alpas, Wear 301, 626 (2013)CrossRefGoogle Scholar
  10. 10.
    S.O. Yim, W.J. Lee, D.H. Cho, I.M. Park, Metals Mater. Int. 21, 408 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Sankaranarayanan, R.K. Sabat, S. Jayalakshmi, S. Suwas, M. Gupta, Mater. Chem. Phys. 143, 1178 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Farkas, H. Choe, K. Máthis, Z. Száraz, Y. Noh, Z. Trojanová, P. Minárik, Metals Mater. Int. 21, 652 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Yao, D. Wu, C. Chen, M. Zhang, Compost. A 50, 65 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Ansari, M.K. Hassanzadeh-Aghdam, Int. J. Mech. Sci. 115–116, 45 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Alizadeh, A. Abdollahi, H. Biukani, J. Alloys Compd. 650, 783 (2015)CrossRefGoogle Scholar
  16. 16.
    C.-M. Liu, F.-F. Ma, Z.-X. Zhang, J.-H. Yang, Y. Wang, Z.-W. Zhou, Compost. B 107, 174 (2016)CrossRefGoogle Scholar
  17. 17.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Compost. Sci. Technol. 70, 2237 (2010)CrossRefGoogle Scholar
  18. 18.
    B.W. Lee, D.H. Cho, J.H. Nam, I.M. Park, Metals Mater. Int. 22, 4 (2016)Google Scholar
  19. 19.
    D.H. Cho, J.H. Nam, B.W. Lee, S.O. Im, I.M. Park, Metals Mater. Int. 22, 714 (2016)CrossRefGoogle Scholar
  20. 20.
    H.Y. Yue, B. Wang, X. Gao, S.L. Zhang, X.Y. Lin, L.H. Yao, E.J. Guo, J. Alloys Compd. 692, 395 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Compost. A 42, 2093 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Liang, H. Li, L. Qi, W. Tian, X. Li, J. Zhou, D. Wang, J. Wei, Mater. Sci. Eng. A 678, 101 (2016)CrossRefGoogle Scholar
  23. 23.
    W.J. Lee, Y.J. Kim, N.H. Kang, I.M. Park, Y.H. Park, Mech. Compost. Mater. 46, 6 (2011)Google Scholar
  24. 24.
    R.A. Saravanan, M.K. Surappa, Mater. Sci. Eng. A 276, 108 (2000)CrossRefGoogle Scholar
  25. 25.
    J.M. Choi, D.H. Kim, D.H. Cho, Y.S. Choi, I.M. Park, Korean J. Metals Mater. 52, 5 (2013)Google Scholar
  26. 26.
    F. Labib, R. Mahmudi, H.M. Ghasemi, Mater. Sci. Eng. A 640, 91 (2015)CrossRefGoogle Scholar
  27. 27.
    W.J. Lee, S.K. Jo, I.M. Park, Y.H. Park, Mater. Sci. Eng. A 528, 4564 (2011)CrossRefGoogle Scholar
  28. 28.
    W.J. Lee, J.H. Son, I.M. Park, J.J. Oak, H. Kimura, Y.H. Park, Mater. Trans. 51, 6 (2010)Google Scholar
  29. 29.
    H. Kumar, G.P. Chaudhari, Mater. Sci. Eng. A 607, 435 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Tian, Z.-Q. Shi, Trans. Nonferrous Metals Soc. China 24, 632 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations