Metals and Materials International

, Volume 24, Issue 5, pp 1120–1132 | Cite as

Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

  • Tahiana F. C. HermenegildoEmail author
  • Tiago F. A. SantosEmail author
  • Edwar A. Torres
  • Conrado R. M. Afonso
  • Antonio J. Ramirez


Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.


Granular bainite Bainitic ferrite Non-recrystallization temperature Deformation temperature Friction stir welding 



The authors would like to thank Petrobras, FINEP, TenarisConfab, CNPEM/LNNano, and FEM/UNICAMP for their technical and/or financial support. TFCH and TFAS also thank FACEPE, CNPq, and UFPE.


  1. 1.
    J.P. Wang, Z.-G. Yang, B.Z. Bai, H.S. Fang, Mater. Sci. Eng. A 369, 112–118 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Pontremoli, P. Bufalini, A. Aprile, C. Jannone, Met. Technol. 11, 504–514 (1984)CrossRefGoogle Scholar
  3. 3.
    American Petroleum Institute, Welding of Pipelines and Related Facilities, API Standard 1104, 20th edn. (American Petroleum Institute, Washington, DC, 2005)Google Scholar
  4. 4.
    M. Witek, J. Nat. Gas Sci. Eng. 27, 374–384 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Moeinifar, A.H. Kokabi, H.M. Hosseini, J. Mater. Process. Technol. 211(3), 368–375 (2011)CrossRefGoogle Scholar
  6. 6.
    A.R. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, A.P. Gerlich, J. Mater. Process. Technol. 226, 272–279 (2015)CrossRefGoogle Scholar
  7. 7.
    R.S. Mishra, M.W. Mahoney, Friction stir welding and processing, in Chapter 13: Application of Friction Stir Welding and Related Technologies, ed. by W.J. Arbergast (Materials Park, ASM International, 2007), pp. 293–295Google Scholar
  8. 8.
    H. Fujii, R. Ueji, N. Tsuji, Mater. Sci. Eng. A 429, 50–57 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Defalco, Weld. J. 85, 42–44 (2006)Google Scholar
  10. 10.
    R.S. Mishra, Z.A. Ma, Mater. Sci. Eng. R 50, 1–78 (2008)CrossRefGoogle Scholar
  11. 11.
    W.M. Thomas, E.D. Nicholas, Mater. Des. 18, 269–273 (1997)CrossRefGoogle Scholar
  12. 12.
    N.V. Bangaru, D.P. Fairchild, M.L. Macia, J.U. Koo, A. Ozekcin, in Proceedings of 4th International Pipeline Technology Conference, Ostend (2004), pp. 789–808Google Scholar
  13. 13.
    A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, S.A. Packer, Int. J. Offshore Polar Eng. 14, 105–109 (2004)Google Scholar
  14. 14.
    H. Aydin, T.W. Nelson, Mater. Sci. Eng. A 586, 313–322 (2013)CrossRefGoogle Scholar
  15. 15.
    A.M. Tribe, Thesis (Brigham Young University, Provo, 2012)Google Scholar
  16. 16.
    H. Aydin, Mater. Technol. 48, 15–22 (2014)Google Scholar
  17. 17.
    P.J. Konkol, M.F. Mruczek, Weld. J. 86, l87s–l95s (2007)Google Scholar
  18. 18.
    P.J. Konkol, C.D. Sorensen, T.W. Nelson, S.M. Packer, 4th International Symposium on FSW (EUA, Park City, 2003)Google Scholar
  19. 19.
    H. Farhat, I.N.A. Oguocha, S. Yannacopoulos, Materials Science & Technology Conference and Exhibition, Pittsburg (2009), pp. 2457–2468Google Scholar
  20. 20.
    T.F.A. Santos, T.F.C. Hermenegildo, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Eng. Fract. Mech. 77, 2937–2945 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Defalco, R. Steel, Weld. J. 88, 44–48 (2009)Google Scholar
  22. 22.
    G. Krauss, Metall. Mater. Trans. B 34, 781–792 (2003)CrossRefGoogle Scholar
  23. 23.
    T.F.C. Hermenegildo, A.C.S. Silva, E.A. Torres, T.F.A. Santos, A.J. Ramirez, Sold. Insp. 22(2), 129–138 (2017)CrossRefGoogle Scholar
  24. 24.
    L.Y. Wei, T.W. Nelson, Weld. J. 90, 95–101 (2011)Google Scholar
  25. 25.
    T.F.A. Santos, E.A. Torres, E.B. Fonseca, A.J. Ramirez, Mater. Res. 19, 117–131 (2016)CrossRefGoogle Scholar
  26. 26.
    R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37, 89–93 (1996)CrossRefGoogle Scholar
  27. 27.
    American Society for Testing and Materials. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, ASTM E1290, (1997)Google Scholar
  28. 28.
    M.D. Husain, R. Sarkar, T. Pal, N. Prabhu, M. Ghosh, J. Mater. Eng. Perform. 24, 3673–3683 (2015)CrossRefGoogle Scholar
  29. 29.
    H.K.D.H. Bhadeshia, Bainite in Steels-Transformation. Microstructure and Properties (Institute of Materials, London, 2001)Google Scholar
  30. 30.
    F.G. Caballero, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, H. Roelofs, G. Mastrogiacomo, in 2nd International Conference Super High Strength Steels, Peschiera (2010), pp. 17–20Google Scholar
  31. 31.
    X. Wang, F.R. Xiao, Y.H. Fu, X.W. Chen, B. Liao, Mater. Sci. Eng. A 530, 539–547 (2011)CrossRefGoogle Scholar
  32. 32.
    N. Huda, A.R. Midawi, J. Gianetto, R. Lazor, A.P. Gerlich, Mater. Sci. Eng. A 662, 481–491 (2016)CrossRefGoogle Scholar
  33. 33.
    J.P. Wang, Z.G. Yang, B.Z. Bai, H.S. Fang, Mater. Sci. Eng. A 369, 112–118 (2004)CrossRefGoogle Scholar
  34. 34.
    S. Shanmugam, R.D.K. Misra, J. Hartamann, S.G. Jansto, Mater. Sci. Eng. A 441, 215–229 (2006)CrossRefGoogle Scholar
  35. 35.
    J.S. Benjamin, Mechanical alloying. Sci. Am. 234, 40–48 (1976)CrossRefGoogle Scholar
  36. 36.
    J.W. Sowards, Mater. Des. 88, 632–642 (2015)CrossRefGoogle Scholar
  37. 37.
    T.J. Lienert, W.L. Stellwag, B.B. Grimmett, R.W. Warke, Weld. Res. Suppl. Weld. J. 82, 1–9 (2003)Google Scholar
  38. 38.
    Z. Yanlei, J. Tao, Z. Xiangjun, L. Zhenyu, R.D.K. Misra, Mater. Sci. Eng. A 626, 352–361 (2015)CrossRefGoogle Scholar
  39. 39.
    J.H. Park, H.K.D.H. Bhadeshia, L. Karlsson, E. Keehan, Sci. Technol. Weld. Join. 13, 593–597 (2008)CrossRefGoogle Scholar
  40. 40.
    H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, N.J. Kim, Mater. Sci. Eng. A 528, 3350–3357 (2011)CrossRefGoogle Scholar
  41. 41.
    T.F.A. Santos, E.A. Torres, J.M.C. Vilela, M.S. Andrade, A.B. Cota, Rev. Latin Am. Metal. Mat. 35, 118–133 (2015)Google Scholar
  42. 42.
    H.-H. Cho, S.H. Kang, Mater. Des. 34, 258–267 (2012)CrossRefGoogle Scholar
  43. 43.
    J.R. Yang, C.Y. Huan, C.S. Chiou, ISIJ Int. 35, 1013–1019 (1995)CrossRefGoogle Scholar
  44. 44.
    C.S. Chiou, J.R. Yang, C.Y. Huanga, Mater. Chem. Phys. 69, 113–124 (2001)CrossRefGoogle Scholar
  45. 45.
    K.L. Fujiwara, ISIJ Int. 35, 1006–1012 (1995)CrossRefGoogle Scholar
  46. 46.
    C. Ouchi, Trans. ISIJ 22, 214–222 (1982)CrossRefGoogle Scholar
  47. 47.
    F. Boratto, R. Barbosa, S. Yue, J.J. Jonas, Thermec (Tokyo, The Iron and Steel Institute of Japan, 1988), pp. 383–390Google Scholar
  48. 48.
    R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels: Microstructure and Properties, 2nd edn. (Edward Arnold Ltd., London, 1995)Google Scholar
  49. 49.
    S. Yamamoto, ISIJ Int. 35, 1020–1026 (1995)CrossRefGoogle Scholar
  50. 50.
    A.B. Cota, Ph. D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte (1998) (in portuguese) Google Scholar
  51. 51.
    M. Katsumata, O. Ishiyama, T. Inoue, Mater. Trans. 32, 715–728 (1991)CrossRefGoogle Scholar
  52. 52.
    J.R. Yang, International Symposium on Low-Carbon Steels (TMS, Pittsburgh, 1993), pp. 293–301Google Scholar
  53. 53.
    J.B. Huanga, Z. Xub, Mater. Sci. Eng. A 438–440, 254–257 (2006)CrossRefGoogle Scholar
  54. 54.
    S. Kajiwara, Metall. Trans. A 17, 1693–1702 (1986)CrossRefGoogle Scholar
  55. 55.
    G. Krauss, Mater. Sci. Eng., A 273–275, 40–59 (1999)CrossRefGoogle Scholar
  56. 56.
    Z. Xu, J. Huang, Mater. Sci. Eng. A 438–440, 258–261 (1996)Google Scholar
  57. 57.
    J. Huang, Z. Xu, Acta Metall. Sinica (Engl. Lett.) 19, 133–138 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Department of Mechanical EngineeringUniversidad de AntioquiaMedellinColombia
  3. 3.Department of Materials EngineeringUniversidade Federal de São CarlosSão CarlosBrazil
  4. 4.Department of Materials Science and EngineeringOhio State UniversityColumbusUSA

Personalised recommendations