Metals and Materials International

, Volume 24, Issue 5, pp 919–925 | Cite as

Estimation of Transformation Temperatures in Ti–Ni–Pd Shape Memory Alloys

  • P. L. Narayana
  • Seong-Woong KimEmail author
  • Jae-Keun Hong
  • N. S. ReddyEmail author
  • Jong-Taek Yeom


The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti–Ni–Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti–Ni–Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti–rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.


Shape memory alloys (SMAs) Transformation temperatures Artificial neural networks (ANN) Virtual alloys Ti–Ni–Pd thin films 



This study was supported by grants from the Industrial Strategic Technology Development Program (10042703) funded by the Ministry of Knowledge Economy (MKE) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03932734), Republic of Korea. This study was also partially supported by an internal fund from the Korea Institute of Materials Science (KIMS).

Supplementary material

12540_2018_109_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 32 kb)


  1. 1.
    Y. Liu, M. Kohl, K. Okutsu, S. Miyazaki, Mater. Sci. Eng. A 378, 205–209 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, K. Mitose, Mater. Lett. 34, 23–29 (1998)CrossRefGoogle Scholar
  3. 3.
    R. Delville, D. Schryvers, Intermetallics 18, 2353–2360 (2010)CrossRefGoogle Scholar
  4. 4.
    R. Zarnetta, E. Zelaya, G. Eggeler, A. Ludwig, Scr. Mater. 60, 352–355 (2009)CrossRefGoogle Scholar
  5. 5.
    S.-W. Kim, C.H. Park, J.H. Kim, J.K. Hong, J.-T. Yeom, J. Alloys Compd. 610, 315–321 (2014)CrossRefGoogle Scholar
  6. 6.
    J.G. Fuentes, P. Gumpel, J. Strittmatter, Adv. Eng. Mater. 4, 437–452 (2002)CrossRefGoogle Scholar
  7. 7.
    J. Van Humbeeck, J. Eng. Mater. Technol. 121, 98–101 (1999)CrossRefGoogle Scholar
  8. 8.
    H.K.D.H. Bhadeshia, ISIJ Int. 39, 966–979 (1999)CrossRefGoogle Scholar
  9. 9.
    N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175–183 (2015)CrossRefGoogle Scholar
  10. 10.
    W. Sha, S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications (Elsevier, New York, 2009)CrossRefGoogle Scholar
  11. 11.
    O. Eyercioglu, E. Kanca, M. Pala, E. Ozbay, J. Mater. Process. Technol. 200, 146–152 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Tanikić, M. Manić, S. Ranđelović, D. Đenadić, D. Brodić, Int. J. Res. Eng. Technol. 3, 1–6 (2014)Google Scholar
  13. 13.
    D. Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, H. Horikawa, Mater. Lett. 22, 241–248 (1995)CrossRefGoogle Scholar
  14. 14.
    N.S. Reddy, A.K. Prasada Rao, M. Chakraborty, B.S. Murty, Mater. Sci. Eng. A 391, 131–140 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55, 257–315 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actuators A 112, 395–408 (2004)CrossRefGoogle Scholar
  17. 17.
    C. Zhang, C. Yang, G. Ding, J. Wu, Mater. Charact. 59, 957–960 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Miyazaki, Y. Fu, W. Huang, Thin Film Shape Memory Alloys: Fundamentals and Device Applications, vol. 1 (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  19. 19.
    D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki, H. Horikawa, Intermetallics 3, 35–46 (1995)CrossRefGoogle Scholar
  20. 20.
    R. Delville, D. Schryvers, Intermetallics 18, 2353–2360 (2010)CrossRefGoogle Scholar
  21. 21.
    S.-H. Wei, C.-C. Lin, J. Mater. Res. 29, 923–934 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Titanium DepartmentKorea Institute of Materials ScienceChangwonSouth Korea
  2. 2.School of Materials Science and Engineering, Engineering Research InstituteGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations