Metals and Materials International

, Volume 24, Issue 4, pp 904–912 | Cite as

Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study

  • Prabal Dev Bhuyan
  • Sanjeev K. GuptaEmail author
  • Deobrat Singh
  • Yogesh Sonvane
  • P. N. Gajjar


In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are − 3.24, − 2.53 and − 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.


Electronic properties Magnetization Optical properties Density functional theory 



SKG would like to acknowledge the use of high performance computing clusters at K2-IUAC, New Delhi and YUVA, PARAM-II, Pune to obtain the partial results presented in this paper. PDB and SKG would like to thank the Science and Engineering Research Board (SERB), India for the financial support (Grant No. YSS/2015/001269).

Supplementary material

12540_2018_102_MOESM1_ESM.docx (8.2 mb)
Supplementary material 1 (DOCX 8444 kb)


  1. 1.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  2. 2.
    M.I. Katsnelson, Mater. Today 10(1), 20–27 (2007)CrossRefGoogle Scholar
  3. 3.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84(19), 195430 (2011)CrossRefGoogle Scholar
  4. 4.
    C.C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107(7), 076802 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Ezawa, Phys. Rev. Lett. 109(5), 055502 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Srivastava, M.S. Khan, S.K. Gupta, R. Pandey, Appl. Surf. Sci. 356, 881–887 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Xu, B. Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Phys. Rev. Lett. 111(13), 136804 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Singh, S.K. Gupta, I. Lukačević, Y. Sonvane, RSC Adv. 6(10), 8006–8014 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Singh, S.K. Gupta, Y. Sonvane, A. Kumar, R. Ahuja, Catal Sci. Technol. 6(17), 6605–6614 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12(1), 113–118 (2011)CrossRefGoogle Scholar
  11. 11.
    N.D. Drummond, V. Zolyomi, V.I. Fal’Ko, Phys. Rev. B 85, 075423 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Ezawa, New J. Phys. 14, 033003 (2012)CrossRefGoogle Scholar
  13. 13.
    M.J. Spencer, T. Morishita (eds.), Silicene: Structure, Properties and Applications, vol. 235 (Springer, New York, 2016)Google Scholar
  14. 14.
    S. Nigam, S.K. Gupta, D. Banyai, R. Pandey, C. Majumder, Phys. Chem. Chem. Phys. 17(10), 6705–6712 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Singh, S.K. Gupta, Y. Sonvane, I. Lukačević, J. Mater. Chem. C 4(26), 6386–6390 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Kamal, M. Ezawa, Phys. Rev. B 91, 085423 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Kamal, A. Chakrabarti, M. Ezawa, New J. Phys. 17(8), 083014 (2015)CrossRefGoogle Scholar
  18. 18.
    K.Y. Lim, D.H. Jang, Y.W. Kim, J.Y. Park, D. Park, Met. Mater. Int. 14, 589 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.W. Kim, Y.S. Chun, J.Y. Park, W.S. Ryu, D. Park, Met. Mater. Int. 13, 197 (2007)CrossRefGoogle Scholar
  20. 20.
    E.S. Oh, Met. Mater. Int. 17, 21 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, Nature 546, 265–269 (2017)CrossRefGoogle Scholar
  22. 22.
    W. Xing, Y. Chen, P.M. Odenthal, X. Zhang, W. Yuan, T. Su, Q. Song, T. Wang, J. Zhong, S. Jia, X.C. Xie, 2D Mater. 4(2), 024009 (2017)CrossRefGoogle Scholar
  23. 23.
    W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 9(10), 794–807 (2014)CrossRefGoogle Scholar
  24. 24.
    C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Science 340(6129), 167–170 (2013)CrossRefGoogle Scholar
  25. 25.
    S.H. Park, J.G. Son, T.G. Lee, H.M. Park, J. Ong Song, Nanoscale Res. Lett. 8(1), 248 (2013)CrossRefGoogle Scholar
  26. 26.
    D.B. Janes, T. Lee, J. Liu, M. Batistuta, N.P. Chen, B.L. Walsh, R.P. Andres, E.H. Chen, M.R. Melloch, J.M. Woodall, R. Reifenberger, J. Electron. Mater. 29, 565 (2000)CrossRefGoogle Scholar
  27. 27.
    H.L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 44, 3056 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Hong, C. Tan, J. Chen, Z. Xu, H. Zhang, Nano Res. 8, 40 (2015)CrossRefGoogle Scholar
  29. 29.
    G.D. Moon, G.H. Lim, J.H. Song, M. Shin, T. Yu, B. Lim, U. Jeong, Adv. Mater. 25(19), 2707–2712 (2013)CrossRefGoogle Scholar
  30. 30.
    A.S.D. Albuquerque, J.D. Ardisson, W.A.D.A. Macedo, J.L. Lopez, R. Paniago, A.I.C. Persiano, J. Magn. Magn. Mater. 226, 379–1381 (2001)Google Scholar
  31. 31.
    C. Sorg, N. Ponpandian, M. Bernien, K. Baberschke, H. Wende, R.Q. Wu, Phys. Rev. B 73(6), 064409 (2006)CrossRefGoogle Scholar
  32. 32.
    P. Kapoor, J. Kumar, A. Kumar, A. Kumar, P.K. Ahluwalia, J. Electron. Mater. 46(1), 650–659 (2017)CrossRefGoogle Scholar
  33. 33.
    V. Zayets, K. Ando, Magneto-Optical Devices for Optical Integrated Circuits. In Frontiers in Guided Wave Optics and Optoelectronics (InTech, New York, 2010)Google Scholar
  34. 34.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  35. 35.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  36. 36.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  38. 38.
    K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82(8), 081101 (2010)CrossRefGoogle Scholar
  39. 39.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13(12), 5188 (1976)CrossRefGoogle Scholar
  40. 40.
    M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006)CrossRefGoogle Scholar
  41. 41.
    C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)CrossRefGoogle Scholar
  42. 42.
    M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics (2001), pp. 76–78Google Scholar
  43. 43.
    F. Wooten, Optical Properties of Solids (Academic, New York, 1972)Google Scholar
  44. 44.
    K. Hermann, Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists (Wiley, Weinheim, 2011)CrossRefGoogle Scholar
  45. 45.
    G. Mukhopadhyay, H. Behera, arXiv:1306.0809 (2013)
  46. 46.
    S.K. Gupta, H.R. Soni, P.K. Jha, AIP Adv. 3(3), 032117 (2013)CrossRefGoogle Scholar
  47. 47.
    S.K. Gupta, D. Singh, K. Rajput, Y. Sonvane, RSC Adv. 6(104), 102264–102271 (2016)CrossRefGoogle Scholar
  48. 48.
    X. Qian, Y. Wang, W. Li, J. Lu, J. Li, 2D Mater. 2(3), 032003 (2015)CrossRefGoogle Scholar
  49. 49.
    D. Tománek, Curr. Appl. Phys. 2(1), 47–49 (2002)CrossRefGoogle Scholar
  50. 50.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)Google Scholar
  51. 51.
    G. Hu, Y. Suzuki, Phys. Rev. Lett. 89(27), 276601 (2002)CrossRefGoogle Scholar
  52. 52.
    J.P. Castera, T. Suzuki, Magneto‐Optical Devices. The Optics Encyclopedia (2004)Google Scholar
  53. 53.
    Z.K.F. Lee, D.E. Heiman, Faraday-stark magneto-optoelectronic (MOE) devices. Massachusetts Institute of Technology, U.S. Patent 5, 640, 021 (1997)Google Scholar
  54. 54.
    S. Kaltenborn, H.C. Schneider, Phys. Rev. B 88(4), 045124 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Computational Materials and Nanoscience Group, Department of PhysicsSt. Xavier’s CollegeAhmedabadIndia
  2. 2.Advanced Materials Lab, Department of Applied PhysicsS.V. National Institute of TechnologySuratIndia
  3. 3.Department of PhysicsGujarat UniversityAhmedabadIndia

Personalised recommendations