Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 730–737 | Cite as

Grain-Refined AZ92 Alloy with Superior Strength and Ductility

  • Jong Un Lee
  • Sang-Hoon Kim
  • Wan-Kuen Jo
  • Won-Hwa Hong
  • Woong Kim
  • Jun Ho Bae
  • Sung Hyuk ParkEmail author
Article

Abstract

Grain-refined AZ92 (GR-AZ92) alloy with superior tensile properties is developed by adding 1 wt% Zn and a very small amount of SiC (0.17 wt%) to commercial AZ91 alloy for enhancing the solid-solution strengthening effect and refining the crystal grains, respectively. The homogenized GR-AZ92 alloy with an average grain size of 91 μm exhibits a tensile yield strength (TYS) of 125 MPa, ultimate tensile strength (UTS) of 281 MPa, and elongation of 12.1%, which are significantly higher than those of AZ91 alloy with a grain size of 420 μm (TYS of 94 MPa, UTS of 192 MPa, and elongation of 7.0%). The peak-aging time of GR-AZ92 alloy (8 h) is significantly shorter than that of AZ91 alloy (32 h) owing to a larger amount of grain boundaries in the former, which serve as nucleation sites of Mg17Al12 precipitates. A short-aging treatment for less than 1 h of the GR-AZ92 alloy causes an effective improvement in its strength without a significant reduction in its ductility. The 30-min-aged GR-AZ92 alloy has an excellent combination of strength and ductility, with a TYS of 142 MPa, UTS of 304 MPa, and elongation of 8.0%.

Keywords

Metals Casting Aging Grain refinement Tensile test 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korea government (MSIP, South Korea) (Nos. 2016R1C1B2012140 and 2017R1A4A1015628).

References

  1. 1.
    B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)CrossRefGoogle Scholar
  2. 2.
    A.A. Luo, J. Magnes, Alloys 1, 2 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Khomamizadeh, B. Nami, S. Khoshkhooei, Metal. Mater. T. A 36A, 3489 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, X. Niu, X. Qiu, K. Liu, C. Nan, D. Tang, J. Meng, J. Alloys Compd. 471, 322 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Wang, L. Wang, J. An, Y. Liu, J. Mater. Eng. Perform. 17, 725 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, D. Zhang, Z. Tian, J. Wang, K. Liu, H. Lu, D. Tang, J. Meng, Mater. Sci. Eng. A 489, 113 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Wang, W. Du, K. Liu, Z. Wang, S. Li, J. Alloys Compd. 522, 78 (2012)CrossRefGoogle Scholar
  8. 8.
    K.F. Ho, M. Gupta, T.S. Srivatsan, Mater. Sci. Eng. A 369, 302 (2004)CrossRefGoogle Scholar
  9. 9.
    M.Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima, Mater. Sci. Eng. A 372, 66 (2004)CrossRefGoogle Scholar
  10. 10.
    P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Mater. Sci. Eng. A 460–461, 357 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Zhen, K. Wu, C. Yao, Mater. Sci. Eng. A 318, 50 (2001)CrossRefGoogle Scholar
  12. 12.
    S.H. Chen, P.P. Jin, G. Schumacher, N. Wanderka, Comp. Sci. Tech. 70, 123 (2010)CrossRefGoogle Scholar
  13. 13.
    S.H. Park, J.H. Bae, S.H. Kim, J. Yoon, B.S. You, Metall. Mater. Trans. A 46A, 5482 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Luo, Can. Metall. Q. 35, 375 (1996)CrossRefGoogle Scholar
  15. 15.
    C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng. A 435–436, 163 (2006)CrossRefGoogle Scholar
  16. 16.
    A.A. Nayeb-Hashemi, J.B. Clark, Phase Diagrams of Binary Magnesium Alloys (ASM International, Metals Park, 1988)Google Scholar
  17. 17.
    E.F. Emley, Principles of Magnesium Technology (Pergamon Press, Oxford, 1966)Google Scholar
  18. 18.
    D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Metall. Mater. Trans. A 36A, 1671 (2005)Google Scholar
  19. 19.
    Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000)CrossRefGoogle Scholar
  20. 20.
    Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, J. Alloys Compd. 619, 639 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Qian, P. Cao, Scr. Mater. 52, 415 (2005)CrossRefGoogle Scholar
  22. 22.
    L. Lu, A.K. Dahle, D.H. StJohn, Scr. Mater. 53, 517 (2005)CrossRefGoogle Scholar
  23. 23.
    Q. Jin, J.P. Eom, S.G. Lim, W.W. Park, B.S. Lou, Scr. Mater. 49, 1129 (2003)CrossRefGoogle Scholar
  24. 24.
    L. Wang, Y.M. Kim, J. Lee, B.S. You, Mater. Sci. Eng. A 528, 1485 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Yano, Y. Tamura, T. Motegi, E. Sato, J. Jpn. Inst. Light Met. 51, 599 (2001)CrossRefGoogle Scholar
  26. 26.
    Y.M. Kim, C.D. Yim, B.S. You, Scr. Mater. 57, 691 (2007)CrossRefGoogle Scholar
  27. 27.
    Y. Huang, K.U. Kainer, N. Hort, Scr. Mater. 64, 793 (2011)CrossRefGoogle Scholar
  28. 28.
    M.A. Easton, A. Schiffl, J.Y. Yao, H. Kaufmann, Scr. Mater. 55, 379 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Günther, Ch. Hartig, R. Bormann, Acta Mater. 54, 5591 (2006)CrossRefGoogle Scholar
  30. 30.
    T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, Y. Hao, J. Alloys Compd. 496, 218 (2010)CrossRefGoogle Scholar
  31. 31.
    J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, B.S. You, Scr. Mater. 93, 8 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Wang, M. Xia, Z. Fan, X. Zhou, G.E. Thompson, Intermetallics 18, 1683 (2010)CrossRefGoogle Scholar
  33. 33.
    S.H. Park, J.G. Jung, J. Yoon, B.S. You, Mater. Sci. Eng. A 626, 128 (2015)CrossRefGoogle Scholar
  34. 34.
    D.B. Williams, E.P. Butler, Int. Met. Rev. 26, 153 (1981)CrossRefGoogle Scholar
  35. 35.
    S. Celotto, Acta Mater. 48, 1775 (2000)CrossRefGoogle Scholar
  36. 36.
    S.-H. Kim, J.U. Lee, Y.J. Kim, J.H. Bae, B.S. You, S.H. Park, J. Mater. Sci. Technol. (2017).  https://doi.org/10.1016/j.jmst.2017.11.019 Google Scholar
  37. 37.
    ASM Metals Handbook, ASM International (Metals Park, OH, 1979)Google Scholar
  38. 38.
    C.R. Brooks, Heat Treatment (Structure and Properties of Nonferrous Alloys, ASM International, Metals Park, OH, 1984)Google Scholar
  39. 39.
    E. Cerri, S. Barbagallo, Mater. Lett. 56, 716 (2002)CrossRefGoogle Scholar
  40. 40.
    S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, T. Kojima, Mater. Sci. Eng. A 523, 47 (2009)CrossRefGoogle Scholar
  41. 41.
    D. Zhao, Z. Wang, M. Zuo, H. Geng, Mater. Des. 56, 589 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Jayalakshmi, S.V. Kailas, S. Seshan, Comp. A Appl. Sci. Manuf. 33, 1135 (2002)CrossRefGoogle Scholar
  43. 43.
    Y. Wang, G. Liu, Z. Fan, Scr. Mater. 54, 903 (2006)CrossRefGoogle Scholar
  44. 44.
    Z.M. Li, A.A. Luo, Q.G. Wang, L.M. Peng, P.H. Fu, G.H. Wu, Mater. Sci. Eng. A 564, 450 (2013)CrossRefGoogle Scholar
  45. 45.
    T.M. Yue, H.U. Ha, N.J. Musson, J. Mater. Sci. 30, 2277 (1995)CrossRefGoogle Scholar
  46. 46.
    M.H. Yoo, Metall. Trans. A 12, 409 (1981)CrossRefGoogle Scholar
  47. 47.
    A. Jain, O. Duygulu, D.W. Brown, C.N. Tome, S.R. Agnew, Mater. Sci. Eng. A 486, 545 (2008)CrossRefGoogle Scholar
  48. 48.
    A. Ghaderi, M.R. Barnett, Acta Mater. 59, 7824 (2011)CrossRefGoogle Scholar
  49. 49.
    S.S. Park, Y.S. Park, N.J. Kim, Met. Mater. Int. 8, 551 (2002)Google Scholar
  50. 50.
    H. Hu, J. Mater. Sci. 33, 1579 (1998)CrossRefGoogle Scholar
  51. 51.
    M. Suresh, A. Srinivasan, U.T.S. Pillai, B.C. Pai, Mater. Sci. Eng. A 528, 8573 (2011)CrossRefGoogle Scholar
  52. 52.
    X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, M.Y. Zheng, Mater. Sci. Eng. A 682, 491 (2017)CrossRefGoogle Scholar
  53. 53.
    C.H. Cáceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Mater. Sci. Eng. A 325, 344 (2002)CrossRefGoogle Scholar
  54. 54.
    S. Kleiner, O. Beffort, A. Wahlen, P.J. Uggowitzer, J. Light Met. 2, 277 (2002)CrossRefGoogle Scholar
  55. 55.
    K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, Mater. Sci. Eng. A 528, 7484 (2011)CrossRefGoogle Scholar
  56. 56.
    A.H. Feng, B.L. Xiao, Z.Y. Ma, R.S. Chen, Metall. Mater. Trans. A 40, 2447 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Suresh, A. Srinivasan, K.R. Ravi, U.T.S. Pillai, B.C. Pai, Mater. Sci. Eng. A 525, 207 (2009)CrossRefGoogle Scholar
  58. 58.
    A.H. Feng, Z.Y. Ma, Scr. Mater. 56, 397 (2007)CrossRefGoogle Scholar
  59. 59.
    Y. Turen, Mater. Des. 49, 1009 (2013)CrossRefGoogle Scholar
  60. 60.
    D.R. Ni, D. Wang, A.H. Feng, G. Yao, Z.Y. Ma, Scr. Mater. 61, 568 (2009)CrossRefGoogle Scholar
  61. 61.
    S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen, E. Candan, Mater. Sci. Eng. A 501, 115 (2009)CrossRefGoogle Scholar
  62. 62.
    X. Feng, M. Xuegang, S. Yangshan, J. Mater. Sci. 41, 4725 (2006)CrossRefGoogle Scholar
  63. 63.
    R.W. Heine, C.R. Loper Jr., P.C. Rosenthal, Principles of Metal Casting, 2nd edn. (McGraw-Hill Book Company, New York, 1967)Google Scholar
  64. 64.
    W.D. Callister Jr., D.G. Rethwisch, Fundamentals of Materials Science and Engineering, 3rd edn. (Wiley, New York, 2007)Google Scholar
  65. 65.
    P. Monica, P.M. Bravo, D. Cardenas, J. Mater. Proc. Tech. 239, 297 (2017)CrossRefGoogle Scholar
  66. 66.
    Q.Z. Peng, H.T. Zhou, F.H. Zhong, H.B. Ding, X. Zhou, R.R. Liu, T. Xie, Y. Peng, Mater. Des. 66, 566 (2015)CrossRefGoogle Scholar
  67. 67.
    J.K. Kim, S.H. Oh, K.C. Kim, W.T. Kim, D.H. Kim, Met. Mater. Int. 23, 308 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Jong Un Lee
    • 1
  • Sang-Hoon Kim
    • 1
  • Wan-Kuen Jo
    • 2
  • Won-Hwa Hong
    • 3
  • Woong Kim
    • 2
  • Jun Ho Bae
    • 4
  • Sung Hyuk Park
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Environmental EngineeringKyungpook National UniversityDaeguRepublic of Korea
  3. 3.School of ArchitectureKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Implementation Research DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations