Skip to main content
Log in

Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al–Si–Mn–Mg Casting Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of − 12.8 and − 10.3 MPa, respectively. The formation β′, β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Siyi, L. Lin, Res. Dev. 5, 186–189 (2008)

    Google Scholar 

  2. Report of Sub-committee T.S.32, Internal Stress in Castingsitle. Proc. Inst. Brit. Found., pp. A179–A189 (1952)

  3. R.N. Parkins, A. Cowan, Proc. Inst. Brit. Found., pp. A99–A109 (1953)

  4. Primary aluminum: Alloys for Pressure Die Casting, Rheinfelden alloys, version 3, pp. 30. www.rheinfelden-alloys.eu. Accessed Dec 2015

  5. J.E. Gruzleski, B.M. Closset, The Treatment of Liquid Aluminum–Silicon Alloys (American Foundry Society, Des Plaines, 1990), pp. 14–15

    Google Scholar 

  6. E. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Int. J. Cast Met. Res. 27, 107–114 (2014)

    Article  Google Scholar 

  7. A. Serizawa, T. Sato, M.K. Miller, Mater. Sci. Eng. A 561, 492–497 (2013)

    Article  Google Scholar 

  8. M.A. van Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergen, Acta Mater. 55, 2183–2199 (2007)

    Article  Google Scholar 

  9. M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, V. Kodetová, H. Kudrnová, P. Hruška, Mater. Charact. 129, 1–8 (2017)

    Article  Google Scholar 

  10. D.S. MacKenzie, V. Forge, Heat Treat. Prog. 5, 37–43 (2005)

    Google Scholar 

  11. E. Lee, W. Khalfaoui, B. Mishra, B. Palmer, J. Test. Eval. 45, 1–8 (2017)

    Google Scholar 

  12. S.D.A.P.N. Crepeau, J.A. Warden, AFS Trans. 98, 813–822 (1990)

    Google Scholar 

  13. N. Chobaut, D. Carron, S. Arsène, P. Schloth, J.M. Drezet, J. Mater. Process. Technol. 222, 373–380 (2015)

    Article  Google Scholar 

  14. S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole, Metall. Mater. Trans. A 34, 751–763 (2003)

    Google Scholar 

  15. V. Fallah, A. Korinek, N. Ofori-Opoku, B. Raeisinia, M. Gallerneault, N. Provatas, S. Esmaeili, Acta Mater. 82, 457–467 (2015)

    Article  Google Scholar 

  16. S. Shabestari, Mater. Sci. Eng. A 383, 289–298 (2004)

    Article  Google Scholar 

  17. P. Crepeau, Trans. Am. Foundrymen’s Soc. 103, 361–366 (1995)

    Google Scholar 

  18. A. Mohamed, A. Samuel, F. Samuel, H. Doty, Mater. Des. 30, 3943–3957 (2009)

    Article  Google Scholar 

  19. A. Mohamed, F. Samuel, A. Samuel, H. Doty, Mater. Des. 30, 4218–4229 (2009)

    Article  Google Scholar 

  20. S. Ferraro, A. Bjurenstedt, S. Seifeddine, Metall. Mater. Trans. A 46, 3713–3722 (2015)

    Article  Google Scholar 

  21. V. Rivlin, G. Raynor, Int. Met. Rev. 26, 133–152 (1981)

    Google Scholar 

  22. C.-L. Chen, A. Richter, R. Thomson, Intermetallics 18, 499–508 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by Advanced Casting Research Center (ACRC) in Metal Processing Institute “Measurement and Modeling of Residual Stress in Aluminum Casting”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Walde, C. & Mishra, B. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al–Si–Mn–Mg Casting Alloy. Met. Mater. Int. 24, 815–820 (2018). https://doi.org/10.1007/s12540-018-0094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0094-7

Keywords

Navigation