Metals and Materials International

, Volume 24, Issue 4, pp 773–788 | Cite as

Contributions of Rare Earth Element (La,Ce) Addition to the Impact Toughness of Low Carbon Cast Niobium Microalloyed Steels

  • Hadi TorkamaniEmail author
  • Shahram RayganEmail author
  • Carlos Garcia MateoEmail author
  • Jafar Rassizadehghani
  • Yahya Palizdar
  • David San-Martin


In this research Rare Earth elements (RE), La and Ce (200 ppm), were added to a low carbon cast microalloyed steel to disclose their influence on the microstructure and impact toughness. It is suggested that RE are able to change the interaction between the inclusions and matrix during the solidification process (comprising peritectic transformation), which could affect the microstructural features and consequently the impact property; compared to the base steel a clear evolution was observed in nature and morphology of the inclusions present in the RE-added steel i.e. (1) they changed from MnS-based to (RE,Al)(S,O) and RE(S)-based; (2) they obtained an aspect ratio closer to 1 with a lower area fraction as well as a smaller average size. Besides, the microstructural examination of the matrix phases showed that a bimodal type of ferrite grain size distribution exists in both base and RE-added steels, while the mean ferrite grain size was reduced from 12 to 7 μm and the bimodality was redressed in the RE-added steel. It was found that pearlite nodule size decreases from 9 to 6 μm in the RE-added steel; however, microalloying with RE caused only a slight decrease in pearlite volume fraction. After detailed fractography analyses, it was found that, compared to the based steel, the significant enhancement of the impact toughness in RE-added steel (from 63 to 100 J) can be mainly attributed to the differences observed in the nature of the inclusions, the ferrite grain size distribution, and the pearlite nodule size. The presence of carbides (cementite) at ferrite grain boundaries and probable change in distribution of Nb-nanoprecipitation (promoted by RE addition) can be considered as other reasons affecting the impact toughness of steels under investigation.


RE addition Cast microalloyed steel Impact toughness Grain size Inclusion 



The authors from University of Tehran gratefully acknowledge the financial support provided by the office of international affairs and the office for research affairs, college of engineering, for the Project Number 8107009.6.34. The authors from CENIM-CSIC would like to acknowledge the financial support from Comunidad de Madrid through DIMMAT-CM_S2013/MIT-2775 Project. Authors are grateful to the Phase Transformations and Microscopy labs from CENIM-CSIC. Mr. Javier Vara Miñambres from the Phase Transformations lab (CENIM-CSIC) is gratefully acknowledged for his continuous experimental support.


  1. 1.
    J. Rassizadehghani, H. Najafi, M. Emamy, G. Eslami-Saeen, J. Mater. Sci. Technol. 23, 779 (2007)Google Scholar
  2. 2.
    J.R. Davis, Alloying: Understanding the Basics (ASM International, Russell Township, 2001)Google Scholar
  3. 3.
    H. Najafi, J. Rassizadehghani, S. Norouzi, Mater. Des. 32, 656 (2011)CrossRefGoogle Scholar
  4. 4.
    K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F.J. Barbaro, C.R. Killmore, S.P. Ringer, Scr. Mater. 66, 710 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Najafi, J. Rassizadehghani, S. Asgari, Mater. Sci. Eng. A 486, 1 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Korojy, H. Nassar, H. Fredriksson, Ironmak. Steelmak. 37, 63 (2010)CrossRefGoogle Scholar
  7. 7.
    M.H. Trejo, E.A. Lopez, J.J. Ruiz, M.D. Mondragon, J. Castro Roman, H.S. Tovar, Met. Mater. Int. 16, 731 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Matsuura, M. Kudoh, Met. Mater. Int. 4, 562 (1998)Google Scholar
  9. 9.
    D.H.S. John, L.M. Hogan, Acta Metall. 25, 77 (1977)CrossRefGoogle Scholar
  10. 10.
    S. Akamatsu, M. Plapp, Curr. Opin. Solid State Mater. Sci. 20, 46 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Nassar, On Peritectic Reactions and Transformations and Hot Forming of Cast Structures. Doctoral PhD dissertation, Department of Material Science and Engineering, School of Industrial Engineering and Management Royal Institute of Technology (KTH), Stockholm, Sweden (2009)Google Scholar
  12. 12.
    I.M.E. Kalinushkin, Yu. Taran, L. Tykhonuk, Metalurgija 41(3), 131 (2002)Google Scholar
  13. 13.
    D. Stefanescu, Science and Engineering of Casting Solidification, 2nd edn. (Springer, Berlin, 2009)Google Scholar
  14. 14.
    S. Griesser, M. Reid, C. Bernhard, R. Dippenaar, Acta Mater. 67, 335 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Shibata, Y. Arai, M. Suzuki, T. Emi, Metall. Mater. Trans. B 31, 981 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Kudoh, K. Igarashi, K. Matsuura, K. Ohsasa, SIJ Int. 48, 334 (2008)Google Scholar
  17. 17.
    T. Lipiński, A. Wach, Arch. Foundry Eng. 14, 55 (2014)Google Scholar
  18. 18.
    A.J. DeArdo, SIJ Int. 35, 946 (1995)Google Scholar
  19. 19.
    A.M. Elwazri, P. Wanjara, S. Yue, Mater. Sci. Eng., A 404, 91 (2005)CrossRefGoogle Scholar
  20. 20.
    B. Mintz, W.B. Morrison, A. Jones, Metals Technol. 6, 252 (1979)CrossRefGoogle Scholar
  21. 21.
    B. Garbarz, F.B. Pickering, Mater. Sci. Technol. 4, 328 (1988)CrossRefGoogle Scholar
  22. 22.
    F.P.L. Kavishe, T.J. Baker, Mater. Sci. Technol. 2, 816 (1986)CrossRefGoogle Scholar
  23. 23.
    K.K. Ray, D. Mondal, Acta Metall. Mater. 39, 2201 (1991)CrossRefGoogle Scholar
  24. 24.
    M.S. Bingley, Mater. Sci. Technol. 17, 700 (2001)Google Scholar
  25. 25.
    S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, S.G. Jansto, Mater. Sci. Eng. A 437, 436 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Gutierrez, Rev. Metal Madr. 50, 1 (2014)Google Scholar
  27. 27.
    I. Gutiérrez, Mater. Sci. Eng. A 571, 57 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Wintz, M. Bobadilla, J. Lehmann, H. Gaye, SIJ Int. 35, 715 (1995)Google Scholar
  29. 29.
    Y. Nuri, T. Ohashi, T. Hiromoto, O. Kitamura, Trans. Iron Steel. Inst. Jpn. 22, 399 (1982)CrossRefGoogle Scholar
  30. 30.
    J. Yang, D.-N. Zou, X.-M. Li, Z.-Z. Du, J. Iron Steel Res. Int. 14, 47 (2007)CrossRefGoogle Scholar
  31. 31.
    L. Wang, Q. Lin, J. Ji, D. Lan, J. Alloys Compd. 408–412, 384 (2006)CrossRefGoogle Scholar
  32. 32.
    L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo, F.M. Wang, J. Alloys Compd. 451, 534 (2008)CrossRefGoogle Scholar
  33. 33.
    S.K. Paul, A.K. Chakrabarty, S. Basu, Metall. Trans. B 13, 185 (1982)CrossRefGoogle Scholar
  34. 34.
    A. Grajcar, M. Kaminska, U. Galisz, L. Bulkowski, M. Opiela, P. Skrzypczyk, JAMME 55, 245 (2012)Google Scholar
  35. 35.
    S. Morioka, H. Suito, SIJ Int. 48, 286 (2008)Google Scholar
  36. 36.
    H. Suito, H. Ohta, S. Morioka, SIJ Int. 46, 840 (2006)Google Scholar
  37. 37.
    G.M.A.S. Hideaki, SIJ Int 39, 1289 (1999)Google Scholar
  38. 38.
    F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kou, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Materials 9, 417 (2016)CrossRefGoogle Scholar
  39. 39.
    K. Chang, W. Feng, L.-Q. Chen, Acta Mater. 57, 5229 (2009)CrossRefGoogle Scholar
  40. 40.
    A.P. Gulyayev, Y.A. Ul’yanin, Met. Sci. Heat Treat. 3, 460 (1961)CrossRefGoogle Scholar
  41. 41.
    A.F. Belyakova, Y.V. Kryankovskii, I.V. Paisov, Met. Sci. Heat Treat. 7, 588 (1965)CrossRefGoogle Scholar
  42. 42.
    K.J. Handerhan, W.M. Garrison, Scr. Metall. 22, 409 (1988)CrossRefGoogle Scholar
  43. 43.
    M.W. Garrison Jr., L.J. Maloney, Mater. Sci. Eng. A 403, 299 (2005)CrossRefGoogle Scholar
  44. 44.
    H.L. Liu, C.J. Liu, M.F. Jiang, Mater. Des. 33, 306 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Gao, P. Fu, H. Liu, D. Li, Metals 5, 383 (2015)CrossRefGoogle Scholar
  46. 46.
    X. Liu, J.-C. Yang, L. Yang, X.-Z. Gao, J. Iron Steel Res. Int. 17, 59 (2010)CrossRefGoogle Scholar
  47. 47.
    X. Chen, Y. Li, Mater. Sci. Eng. A 444, 298 (2007)CrossRefGoogle Scholar
  48. 48.
    J. Lan, J. He, W. Ding, Q. Wang, Y. Zhu, SIJ Int. 40, 1275 (2000)Google Scholar
  49. 49.
    H.L. Liu, C.J. Liu, M.F. Jiang, Adv. Mater. Res. 129–131, 542 (2010)CrossRefGoogle Scholar
  50. 50.
    H. Torkamani, S. Raygan, C. Garcia Mateo, J. Rassizadehghani, J. Vivas, Y. Palizdar, D. San Martin, Metals 7, 377 (2017)CrossRefGoogle Scholar
  51. 51.
    D. San Martin, F.G. Caballero, C. Capdevila, C. Garcia de Andres, Mater. Trans. 45, 2797 (2004)CrossRefGoogle Scholar
  52. 52.
    C. Fossaert, G. Rees, T. Maurickx, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 26, 21 (1995)CrossRefGoogle Scholar
  53. 53.
    H.R. Wang, W. Wang, J. Mater. Sci. 44, 591 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Sohaciu, C. Predescu, E. Vasile, E. Matei, D. Savastru, A. Berbecaru, Dig. J. Nanomater. Biostruct. 8, 367 (2013)Google Scholar
  55. 55.
    H. Drar, Mater. Charact. 45, 211 (2000)CrossRefGoogle Scholar
  56. 56.
    A. Muan, E.F. Osborn, Phase Equilibria Among Oxides in Steelmaking (Addison-Wesley Pub. Co., Boston, 1965)Google Scholar
  57. 57.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, Boca Raton, 2009)Google Scholar
  58. 58.
    D. Chakrabarti, C.L. Davis, M. Strangwood, Mater. Sci. Forum 500–501, 613 (2005)CrossRefGoogle Scholar
  59. 59.
    D. Chakrabarti, Development of Bimodal Grain Structures and Their Effect on Toughness in HSLA Steel, Ph.D. Dissertation, Department of Metallurgy and Materials, School of Engineering, University of Birmingham (2007)Google Scholar
  60. 60.
    C.L. Davis, M. Strangwood, J. Mater. Sci. 37, 1083 (2002)CrossRefGoogle Scholar
  61. 61.
    B.L. Bramfitt, Metall. Trans. 1, 1987 (1970)CrossRefGoogle Scholar
  62. 62.
    Ø. Grong, Metallurgical Modelling of Welding (Institute of Materials, London, 1997)Google Scholar
  63. 63.
    M. Opiela, A. Grajcar, Arch. Foundry Eng. 12, 129 (2012)CrossRefGoogle Scholar
  64. 64.
    R. Tuttle, IJMC 6, 51 (2012)Google Scholar
  65. 65.
    D. Chakrabarti, M. Strangwood, C. Davis, Metall. Mater. Trans. A 40, 780 (2009)CrossRefGoogle Scholar
  66. 66.
    A.S. Kumar, B.R. Kumar, G.L. Datta, V.R. Ranganath, Mater. Sci. Eng. A 527, 954 (2010)CrossRefGoogle Scholar
  67. 67.
    R. Bengochea, B. López, I. Gutierrez, B. López, I. Gutierrez, Metall. Mater. Trans. A 29, 417 (1998)CrossRefGoogle Scholar
  68. 68.
    M.M. Aranda, B. Kim, R. Rementeria, C. Capdevila, C.G. de Andrés, Metall. Mater. Trans. A 45, 1778 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Materalia Research Group, National Center for Metallurgical Research (CENIM)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
  3. 3.Materials and Energy Research CenterKarajIran

Personalised recommendations